Cheatography

Chemistry - Chapter 11:Organic Compound Properties Cheat Sheet by Autumn (Autumn) via cheatography.com/145676/cs/31396/

Organic Reactions

Substitution Reactions

Alkanes:

 $\ref{eq: Constraints}$ Alkane + Halogen \rightarrow Haloalkane

Haloalkanes:

Addition Reactions

Alkenes:

rc Alkene + Hydrogen -Metal Catalyst→ Alkane

C Alkene + H₂O -H₃PO₄ Catalyst→ Alcohol

 \bigcirc Alkene + Hydrogen Halide \rightarrow Haloalkane

C Alkene + Halogen → Dihaloalkane

Hydrolysis Reactions

Esters:

 $\texttt{L} \textbf{Ster} + H_2O \rightarrow Carboxylic \ Acid + Alcohol$

Oxidation Reactions

Alcohols:

I^C Primary Alcohol + Inorganic Oxidant → Aldehyde (Low Temp) or Carboxylic Acid (High Temp)

C Tertiary alcohols can't undergo oxidation

Aldehydes:

Carboxylic Acid

Condensation Reactions

Carboxylic Acids:

 ${\rm sc}{\rm P}$ Esterification: Carboxylic Acid + Alcohol \rightarrow Ester + H_2O

 $\square C$ Carboxylic Acid + NH₃ → Primary Amide + H₂O

 $\label{eq:carboxylic Acid + Primary Amine} \rightarrow \\ Secondary Amide + H_2O \\$

By Autumn (Autumn) cheatography.com/autumn/

Important Oxidants to Remember

Potassium Dichromate (K₂Cr₂O₇)

Potassium Permanganate (KMnO₄)

Organic Compound Physical Properties

Alkanes

☆ Straight chains compress more closely
→ higher BP & dispersion forces

rightarrow Non-polar ightarrow insoluble in H₂O

Alkenes & Alkynes

🖒 Low BP

 $\red{P} \text{ Non-polar} \rightarrow insoluble in \ H_2O$

Haloalkanes

 Weak dispersion forces, but allows stronger dipole-dipole attractions
Higher BP than alkanes
Low solubility due to insignificant dipole-dipole interactions

Alcohols, Carboxylic Acids, Amines & Amides

☆ All have functional groups that form Hbonds (strongest intermolecular force)

C High BP due to H-bonds

௴ Highest-lowest BP for alcohol types: primary, secondary, tertiary

🖒 Soluble

Aldehydes, Ketones & Esters

௴ Held by dipole-dipole attractions
௴ Low BP due to no H-bonding with each other

C Soluble in H₂O due to H-bonding

Physical Properties

- ho Boiling Point \rightarrow increases with size
- \mathbb{C} Solubility \rightarrow decreases with size

C Flashpoint: The lowest temp that a substance in vapour form combusts/ignites. Works hand-in-hand with BP, but is always lower than BP

Percentage Yield Formula

% Yield = (AY÷TY) x 100

Actual Yield (AY)	Theoretical Yield (TY)
ເ∂ Actual amount made	Estimated amount made by stoichiometry
🖒 Usually given in question	

Calculating The Overall % Yield

Atom Economy

Atom Economy = (M_r of wanted product \div M_r of ALL reactants) x 100

C Measure of how many atoms in reactants end up in wanted product → aim to maximise atom economy

Not published yet. Last updated 6th July, 2022. Page 1 of 1. Sponsored by Readable.com Measure your website readability! https://readable.com