\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{audiebean} \pdfinfo{ /Title (nervous-system.pdf) /Creator (Cheatography) /Author (audiebean) /Subject (Nervous System Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{9B949C} \definecolor{LightBackground}{HTML}{F8F8F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Nervous System Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{audiebean} via \textcolor{DarkBackground}{\uline{cheatography.com/213562/cs/46477/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}audiebean \\ \uline{cheatography.com/audiebean} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 27th May, 2025.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definitions}} \tn % Row 0 \SetRowColor{LightBackground} Diffusion & The process of movement of molecules under a concentration gradient \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Electrical gradient & An electrostatic force caused by the separation of electrical charge \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} Membrane potential & A separation of opposite charges across the plasma membrane \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} Action Potential & Brief all or nothing reversal in membrane potential, lasting on the order of 1 millisecond \tn % Row Count 13 (+ 4) % Row 4 \SetRowColor{LightBackground} Propagation & Action potentials propagate when locally generated depolarizing current spreads to adjacent regions of membrane causing it to depolarize \tn % Row Count 19 (+ 6) % Row 5 \SetRowColor{white} Contiguous Conduction & Propagation of action potentials in unmyelinated fibers by spread of locally generated depolarizing current to adjacent regions of membrane, causing it to depolarize \tn % Row Count 26 (+ 7) % Row 6 \SetRowColor{LightBackground} Myelin & A multilayered sheath of plasma membrane that wraps around axonal fibers and acts as an insulator to the flow of current \tn % Row Count 31 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 7 \SetRowColor{LightBackground} Saltatory Conduction & Propagation of action potentials in myelinated axons by jumping from node to node \tn % Row Count 4 (+ 4) % Row 8 \SetRowColor{white} Graded Potentials & Local changes in membrane potential that decay over short distance \tn % Row Count 7 (+ 3) % Row 9 \SetRowColor{LightBackground} Synapse & Junction between two neurons, or between a neuron and a muscle or gland that enables one cell to electrically and/or biochemically influence another cell \tn % Row Count 13 (+ 6) % Row 10 \SetRowColor{white} Electrical Synpase & Direct electrical connection between two cells, formed by a gap junction \tn % Row Count 16 (+ 3) % Row 11 \SetRowColor{LightBackground} Gap Junctions & made up of multiple proteins called connexins \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Diffusion and Gradients}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Diffusion}} is the process of movement of molecules under a concentration gradient.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{There are five factors that affect the {\bf{rate of diffusion}}: magnitude of the concentration gradient, permeability of the membrane, surface area of the membrane, molecular weight of the substance, and distance over which diffusion takes place} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Concentration gradients}} are formed when there is a difference in concentration in two different areas; molecules typically move from an area of greater concentration to an area of lesser concentration. {\bf{Net diffusion}} is the difference between two opposing movements.} \tn % Row Count 13 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{An {\bf{electrical gradient}} is when electrostatic forces are caused by the separation of electrical charges.} \tn % Row Count 16 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{An {\bf{electrochemical gradient}} is the combined force of concentration and electrical gradients} \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.09034 cm} x{2.88666 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Membrane Potential}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{A {\bf{membrane potential (Vm)}} is a separation of opposite charges across the plasma membrane. The cell creates this charge separation when it: 1) establishes and maintains concentration gradients for key ions 2) Ions diffuse through the membrane down their concentration gradient 3) Diffusion through the membrane results in charge separation, creating a membrane potential 4) Net diffusion continues unti lthe force exerted by the electrical gradient exactly balances the force exerted by the concentration gradient 5) This potential that would exist at this equilibrium is {\bf{"equilibrium potential"}}} \tn % Row Count 13 (+ 13) % Row 1 \SetRowColor{white} Equilibrium Potential for K+ & 1. K+ Tends to move out of the cell 2. Outside of the cell becomes more positive 3. Electrical gradient tends to move K+ into the cell 4. Electrical gradient counterbalances concentration gradient 5. No further net movement of K+ occurs 6. E(K+) = -90mV \tn % Row Count 24 (+ 11) % Row 2 \SetRowColor{LightBackground} Equilibrium Potential for Na+ & 1. Na+ tends to move into the cell 2. Inside of the cell becomes more positive 3. Electrical gradient tends to move Na+ out the cell 4. Electrical gradient counterbalances concentration gradient 5. No further net movement of Na+ occurs 6. E(Na+)=+60mV \tn % Row Count 35 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.09034 cm} x{2.88666 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Membrane Potential (cont)}} \tn % Row 3 \SetRowColor{LightBackground} Nernst equation & equation describing the equilibrium: Ei = RT/zF In {[}i{]}o/{[}i{]}i potential for a particular ion (i) \tn % Row Count 5 (+ 5) % Row 4 \SetRowColor{white} Resting Membrane Potential & Resting membrane potential is -70mV because: the membrane is 20-30 more permeable to K+ than Na+ and there is a large net diffusion of K+. It is created due to a balance of passive leak channels and active Na+/K+ ATPase. \tn % Row Count 15 (+ 10) % Row 5 \SetRowColor{LightBackground} Action Membrane Potential & {\bf{Depolarization}}: change in membrane polarization to more positive values than rest. {\bf{Repolarization}}: return to resting membrane potential after depolarization. {\bf{Hyperpolarization}}: change in membrane polarization to more negative values than rest. There is a {\bf{rising phase}} in which Na+ moves into the cell and the {\bf{falling phase}} in which K+ leaves the cell with the help of voltage-gated Na+ or K+ channels. \tn % Row Count 34 (+ 19) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Channels}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Leak Channels}} & Passive channels that permit ions to flow down concentration gradients \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Na/K ATPase}} & Active channel that establishes and maintains concentration gradients. It pumps 3 Na+ out of the cell for every 2 K+ pumped into the cell \tn % Row Count 8 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}