Stats exam 3 Cheat Sheet

Cheatography

by athenamarko via cheatography.com/166726/cs/35448/

The Normal Distribution and Standard Scores	
Why is the normal distribution important?	 Many naturally occurring data (e.g., height, weight, etc.) have many distributions which are approximately normal. Many statistical tests covered later use normal distributions. Many sampling distributions approximate a normal distribution with large sample sizes.
Properties of a normal distri- bution	- Unimodal - Mean is middle most score - Equal on each side -Two injection points occurring at (x μ+1σ & μ–1σ)
Area under the normal distri- bution	Calculated in percentages, the total area under the curve = 100%. Broken up into 8 sections. (0.13, 2.15, 13.9, 34.13, 34.13,(mean (No
Area under the normal curve it's based on	The number of standard deviations from the mean is constant for all normal distributions.
For any score	If we know how many standard deviations it is away from the mean
How do we calculate?	$z = (X-\mu)/\sigma$
Z Scores	
What is a standard (or z) Score?	z score is a <i>transformed</i> score that designates how many standard deviation units the corresponding raw score is above or below the mean.
What are the properties of z score	28? 1. Mean=0 (µz=0)

	 2. Standard deviation=1 (σz=1) 3. Shape of z score distribution is the SAME as shape of raw score distribution -> The relative positions of the scores in the distribution do not change either
Column A	Shows the z score
Column B	Area between mean and z
Column C	Area beyond z
Column B and C will always add up to	0.5000
Area under the normal curve based on the number of standard deviations from the mean is	constant for all normal distributions
The scores we calculate are also called	 z score normal scores standardized scores*
Converting z scores will	Standardize any distribution without regard to the original mean or SD
Once it is standardized it will	Always have a mean of 0 and a SD of 1 which allows for comparison across different distributions

Probability

What are the two types of questions in inferential statistics?		 Hypothesis testing Parameter estimation
By athenamarko	Not published yet.	Sponsored by ApolloPad.com
	Last updated 15th November, 2022.	Everyone has a novel in them. Finish
	Page 1 of 6.	Yours!
chootography com/athonomarko/		https://apollopad.com

cheatography.com/athenamarko/

Cheatography

Stats exam 3 Cheat Sheet by athenamarko via cheatography.com/166726/cs/35448/

Probability (cont)		
Hypothesis testing	We have a hypothesis about a certain po tions	pulation and we wish to test it using a sample drawn from that popula-
Parameter estimation	We wish to know the magnitude of a population of the students who graduate with a psych degring the students who graduate with a psych degring of	ulation characteristic, so we test a sample (e.g., how much salary do ee make in Canada?)
The goal is to	Infer something about the population bas ative of the population and it must be a ra	ed on the info from a sample, thereforethis sample has to be represent- andom sample.
Random sample	A sample selected from the population th 1) Each possible sample has an equal ch 2) Each member of the population has ar	-
Why do we need random samples?	 If we wish to generalize to the populati The laws of probability cannot be used 	on, the sample must be representative of the population. if the sample isn't random
Probability	 Cannot be negative (between 0-1) Probability = 0 (event is certain not to oc Probability = 1 (event is certain to occur 2)Usually expressed as a decimal number 	
Probability can be calculated in two ways	 a priori probability deduced from reason (i.e., theoretically A posteriori probability Calculated based on the actual observa 	
A priori	From before	
A posteriori	After the fact	
A priori probability		
A priori probability		Based on reason without actual observations
P(A) =		Number of events classifiable as "A"/ Total number of possible events
What is the a priori probability of flipping a coin and getting a "head" p(A) = 0.5		
A posteriori probability		

A posteriori probabiity

Based on the actual observations

By athenamarko

Not published yet. Last updated 15th November, 2022. Page 2 of 6. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/athenamarko/

Cheatography

number of occurrences
posteriori p(A) = 0.60
ned with determining the probability of joint or successive Ince of several events
t is the probability of both A and B happening together t is the probability of A happening first and B happening second?
ility of A
ility of B, given that A has occurred
3 A)
ents are independent if the occurrene of one event has no effect of bability of occurrence of the other event ampling with replacement results in INDEPENDENT EVENTS (p(A = p(A)p(B)
A: "3" on the 1st die on the 1st die) = 1/6 3: "4" on the 2nd die on the 2nd die "3" on the 1st die) = 1/6 {{nl} (1/6)(1/6) = 0.0278
to events are dependent if the occurrence of one event (e.g., A) has ct on the probability of occurrence of the other event (e.g., B). campleing WITHOUT replacement results in DEPENDENT S p(A and B) = $p(A)p(B A)$

Mutually exclusive events	Two events are mutually exclusive when the occurrence of one <i>precludes</i> the occurrence of the other. Two events that CANNOT occur together $p(A \text{ and } B) = 0$
Addition rule for probability	Concerned with determining the probability of occurrence of any one of several possible events - Probability of A or B
p(A or B) =	p(A) +p(B) - p(A and B)

Not published yet. Last updated 15th November, 2022. Page 3 of 6. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/athenamarko/

Stats exam 3 Cheat Sheet

Cheatography by athenamarko via cheatography.com/166726/cs/35448/

Addition for pro	bability (cont)	
	t is the probability that you will draw a king on the first card from the deck?	Event A: King on the 1st card - p(king) = 4/52 Event B: Diamond on the 1st card p (diamond) = 13/52 = (4/52) + (13/52) - (1/52) = 16/52 = 0.3077
Exhaustive set	s of events	A set of events is exhaustive if the set includes all of the possible events (rolling a die, the set of events of getting a 1, 2, 3, 4, 5, or 6 is exhaustive; flipping a coin, the set of events of getting a head or tail is exhaustive)
If a set of even exclusive	ts (A, B, C) are exhaustive and mutually	p(A) + p(B) + p(C) + = 1
Example (M(*)&A(+)): If you have a regular deck of playing cards, what is the probability that at least one of the next three cards will be red (w/o replacement)?		p(at least 1 out of 3 red) = 1-p(all black) =1-(26/52)(25/51)(24/50) =1-0.117647 =0.8824
Hypothesis Tes	sting	
Why can't we just look at the data?		' the difference between groups or conditions (could have happened due to ntial stats to test hypotheses, to determine whether there's a real difference between bject variable).
Free throw distractions in Basketball	Do free throw distractions influence the play	ver's ability to successfully make free throws?
Example	- Fan distractions affects free throw accuracy (H1)	

Example	 Fan distractions affects free throw accuracy (H1)
hypotheses	- Fan distractions does not affect free throw accuracy (H0)
	-Free throws are more difficult to make with distractions (H ${\tt l}$)
	-Free throws are not more difficult ot make with distractions(H $\!$
	- Free throws are easier to make with distractions (H $\ensuremath{^1}\xspace)$
	- Free throws ar enot easier to make with distractions (H ${\tt 0})$

Not published yet. Last updated 15th November, 2022. Page 4 of 6.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/athenamarko/

By athenamarko

Cheatography

Stats exam 3 Cheat Sheet by athenamarko via cheatography.com/166726/cs/35448/

Hypothesis Testing (cont)
Null hypothesis	-hypothesies no effect - No difference bwtween groups No difference between conditions no relationship NO DIFFERENCE - NO EFFECT
Alternative hypothesis	- Hypothesizes that ther will be difference between groups / conditions and hat this dfference is due to the indepe- ndent variable/ subject variable
H0 and H1 must be	mutually exclusive and exhaustive
Decision rule	- there must be criteria by which we will decide3 if the independent variable really did have an effect (we can use probability)
IF the proability is low	We will reject H0 and accept H1
If the probabiliyt is not that low	We will not reject H0 a
Threashold	a (alpha) 0.05 or for more precision 0.01
Type 1 error	Decide to reject eh null hypothesis but the null is actually true
Type 2 error	Decided to keep the null hypothesis but it actually is'nt true.

cheatography.com/athenamarko/

Not published yet. Last updated 15th November, 2022. Page 6 of 6. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com