\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{ashireii (ashireii)} \pdfinfo{ /Title (science-10-unit-ii-physics.pdf) /Creator (Cheatography) /Author (ashireii (ashireii)) /Subject (Science 10: Unit II - Physics Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{81A140} \definecolor{LightBackground}{HTML}{F7F9F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Science 10: Unit II - Physics Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{ashireii (ashireii)} via \textcolor{DarkBackground}{\uline{cheatography.com/196995/cs/41463/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}ashireii (ashireii) \\ \uline{cheatography.com/ashireii} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 28th November, 2023.\\ Updated 28th November, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{{\bf{WAVES}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- {\bf{disturbances that travel through a medium or a vacuum in space}} resulting in vibrations} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- the {\bf{energy passing through a medium or a vacuum}} {\emph{creates}} the {\bf{{\emph{waves}}}}} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{{\bf{Mechanical Waves}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- waves that {\bf{requires a medium or any matter for it's energy to travel}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- the {\bf{energy and vibrations of these waves interact with the molecules of a medium}} that can come in the forms of {\emph{solid, liquid, and gaseous}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- {\emph{sound waves, water waves, seismic waves and slinky or spring waves}} are some examples of this type of wave} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{{\bf{Electromagnetic Waves}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- can {\bf{travel through both matter and vacuum}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- formed through the {\bf{interaction of electric fields and magnetic fields}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- {\emph{radio waves and microwaves}} are examples of this wave} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Oscillations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- continuous {\emph{back-and-forth}} or {\emph{side-to-side}} movements of an object} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- waves can {\emph{produce an oscillation in the particles of the medium}} through which it travels} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Transverse Waves}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- particles are oscillating towards a direction {\emph{perpendicular}} to the direction of the wave} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- must travel through a relatively {\emph{solid medium}} because {\bf{it cannot pass through {\emph{liquid}} or {\emph{gaseous matter}}}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- consists of individual waves that oscillates in an {\emph{alternating upward and downward motion}}} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Longitudinal Waves}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- can travel through a {\emph{solid, liquid or gaseous medium}}} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Characteristics of a Wave}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Crest}} - the {\emph{peak}} or {\emph{highest point}} of the upward moving wave} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Trough}} - the {\emph{lowest point}} at each valley} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Normal Line}} - the {\emph{imaginary horizontal line}} in the middle of the wave} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Amplitude}} - the {\emph{distance}} between the {\emph{normal line}} and the {\emph{tip of the crest or trough}}} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Wavelength}} ( {\bf{λ}} ) - the {\emph{distance}} between {\emph{two crests or two trough}}} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Phase}} - {\emph{two wave points}} that are travelling with the {\emph{same speed, displacement and height}} towards the {\emph{same direction}}} \tn % Row Count 12 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Period}} - refers to the {\emph{time}} that {\emph{one crest or trough completes one cycle}} or {\emph{travels a distance of one wavelength}}} \tn % Row Count 15 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Frequency}} ( {\bf{f}} ) - the {\emph{number of full wavelengths}} travelling through a {\emph{point in space}} per {\emph{unit time}}} \tn % Row Count 18 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{the {\emph{shorter the wavelength}}, the {\emph{higher the frequency}} and {\emph{vice versa}}}}} \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Speed of Wave}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{v = λf} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{velocity}} = wavelength x frequency} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{wavelength}} = velocity / frequency} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{frequency}} = velocity / wavelength} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Properties of Mechanical Waves}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Reflection}} - the {\emph{wave's frequency and wavelength}} are {\bf{simply mirrored or reflected}} by the returning wave} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Refraction}} - a wave travelling in one medium {\emph{encounters another wave}} and {\emph{bends at a different angle}}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Diffraction}} - {\emph{wave passes through the open spaces or travels around the edges of the barrier}} , the {\emph{diffracted wave disperses {\bf{outwards}} and {\bf{arches}} as it travels}}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Interference}} - {\emph{two waves meet along the same medium}}} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Constructive Interference}} - combination of {\emph{two interfering waves}} moving towards the {\emph{same direction}}} \tn % Row Count 15 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{Destructive Interference}} - waves are {\emph{combined and decreases each others' amplitude}}} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{{\bf{ELECTROMAGNETIC WAVES}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- EM WAVES} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- they propagate along {\emph{two oscillating fields}} that {\emph{lie perpendicular to each other}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- {\emph{oscillating electric fields}} - {\emph{oscillating magnetic fields}}} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- travels at the same speed of 3 x 10\textasciicircum{}8\textasciicircum{} m/s in a vacuum} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Light Waves}} - {\emph{most accessible EM wave}}} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Electromagnetic Spectrum}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- classification of electromagnetic waves according to their {\emph{frequencies}} and {\emph{wavelengths}}} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Seven Regions of Electromagnetic Spectrum}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Radio Waves}} - longest wavelengths, the least amount of energy, 1cm to 1km, 3kHz to 300gHz} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Microwaves}} - frequencies of radio waves and microwaves overlap, highest frequency for radio waves is lowest for microwaves, 1mm to 1m, 300mHz to 300gHz} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Extremely High Frequency}} ( {\bf{EHF}} ) - 30gHz to 300gHz, 10mm to 1cm, for radio astronomy} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{Super High Frequency}} ( {\bf{SHF}} ) - 3gHz to 30gHz, 1cm to 10cm, for microwave ovens} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Ultra High Frequency}} ( {\bf{UHF}} ) - 300mHz to 3gHz, 1dm to 1m, for satellite communications} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Infrared Rays}} - all objects near room temperature are capable of emitting infrared radiation, 0.74mcm to 1mm, 300gHz to 400tHz} \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Far-infrared rays}} - 300gHz to 30tHz} \tn % Row Count 16 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{Mid-infrared rays}} - 30m to 120m} \tn % Row Count 17 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Near-infrared rays}} - 120tHz to 400 tHz} \tn % Row Count 18 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Visible Light}} - allows human eyes to see things around, 300nm to 700nm, 400tHz to 790tHz} \tn % Row Count 20 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Ultraviolet Light}} - known as {\emph{black lights}} that are used in detecting skin diseases, 10nm to 40nm, frequency higher than visible light} \tn % Row Count 23 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{X-rays}} - used to examine the condition of human bones, 0.01nm to 10nm, 30pHz to 30eHz} \tn % Row Count 25 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Hard X-rays}} - penetrating numerous solid matter, energy \textgreater{}10KeV} \tn % Row Count 27 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{Soft X-rays}} - energy used in producing images of microscopic objects} \tn % Row Count 29 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Gamma Rays}} - similar characteristics as X-rays, \textless{}10pcm, greatest energy 50KeV to 50GeV} \tn % Row Count 31 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{REFLECTION OF LIGHT ON MIRRORS 1}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Reflection}} - when light rays is emitted by a particular source that interacts with a medium that serves as a {\emph{barrier}} which the ray of light bounces back} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{Specular Reflection}} - when light hits a smooth, flat surface and reflects an image almost identical to the object} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Diffused Reflection}} - when light hits a rough, uneven surface and the reflected light rays scatter in different directions} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Law of Reflection}} - the ray of light approaching the mirror is called {\emph{incident ray}} (IR), while the bounces ray from the mirror is called {\emph{reflected ray}} (RR). at the point where the IR meets the surface of the mirror a hypothetical vertical line, perpendicular to the surface between the two rays is called {\emph{normal}} divides the angle formed by the IR and RR. the {\emph{angle of incidence}} (θi) refers to the angle formed by the incident ray and the normal, while the {\emph{angle of reflection}} (θr) refers to the angle formed by the reflected ray and the normal. {\bf{when light hits a barrier, the angle of incidence is equal to the angle of reflection}} {[} {\bf{θi = θr}} {]}} \tn % Row Count 24 (+ 14) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Plane Mirrors}} - made up of flat, reflective surfaces that produce a reflection that is similar to the object} \tn % Row Count 27 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{line of sight}} - the process of directing your sight towards a certain point in space} \tn % Row Count 29 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{lateral inversion}} - "{\emph{mirroring}}" the reflection is reversed forwards and backwards because the object and the mirror is facing each other} \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{REFLECTION OF LIGHT ON MIRRORS 1 (cont)}} \tn % Row 7 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{virtual image}} - forms when the light rays bouncing from an illuminated object appear to be meeting or converging with each other at a definite point but not actually meet} \tn % Row Count 4 (+ 4) % Row 8 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Curved Mirrors}} - crescent-shaped mirror that is a part of a reflective sphere} \tn % Row Count 6 (+ 2) % Row 9 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Concave Mirrors}} - reflective surface that curves inwards {[} {\emph{real image}} {]}} \tn % Row Count 8 (+ 2) % Row 10 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{Convex Mirrors}} - reflective surface that bulges outwards {[} {\emph{virtual image}} {]}} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{REFLECTION OF LIGHT ON MIRRORS 2}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{center of curvature}} - center of the curvature and the center of the sphere itself} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{principal axis}} - line in the middle that intersect points and divides the sphere into two hemispheres} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{vertex}} - where the axis meets the edge of the sphere or the surface of the curved mirror} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{focal point}} - marks the midpoint between the center of the curvature and the vertex} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{focal length}} - the distance between the focal point and the mirror's vertex {[}one half the radius of the curvature} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{radius of curvature}} - marking the distance between the vertex and the center of the curvature} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Ray Diagram Method}} - determines the location of images formed in curved mirrors by tracing the path of light rays passing through an object and bouncing on the surface of a mirror} \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{OPTICAL INSTRUMENTS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{human eyes}} - windows which light enters and enables humans to see, an inch in diameter} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{cornea}} - clear protective outer layer of the eye} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{sclera}} - white part of the eye} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{retina}} - nervous tissue composed of millions of nerve cells} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{farsightedness}} / {\bf{hyperopia}} - distant objects are much clear than nearby objects} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{nearsightedness}} / {\bf{myopia}} - nearby objects are much clear than distant objects} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{astigmatism}} - causes blurred vision due to an irregular-shaped cornea} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{microscope}} - optical instrument for magnifying the tiniest elements} \tn % Row Count 15 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{eyepiece lens}} - makes up the top of the microscope} \tn % Row Count 17 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{objective lenses}} - magnify the view of the specimen} \tn % Row Count 19 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{focusing mechanisms}} - two to four objective lenses with varying magnification power} \tn % Row Count 21 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{telescope}} - for viewing enormous but distant celestial objects} \tn % Row Count 23 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{refracting telescope}} - use lenses to collect weak light from heavenly objects and magnify the image} \tn % Row Count 26 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{reflecting telescope}} - use of mirrors that bend parallel light rays and make them converge into a focus} \tn % Row Count 29 (+ 3) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Newtonian reflector}} - flat mirror that directs the reflected rays to an eyepiece} \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{OPTICAL INSTRUMENTS (cont)}} \tn % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{Cassegrain reflector}} - primary mirror with a hole in the middle and convex secondary mirror} \tn % Row Count 2 (+ 2) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{Coude telescope}} - secondary convex mirror and an angled mirror} \tn % Row Count 4 (+ 2) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{binoculars}} - has two small side by side telescopes} \tn % Row Count 6 (+ 2) % Row 18 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{camera obscura}} - closed box with a tiny hole, light passes and projects inverted image} \tn % Row Count 8 (+ 2) % Row 19 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{daguerreotype camera}} - smaller box with an ocular tube in the middle, polished silver-coated plate, light sensitive surface} \tn % Row Count 11 (+ 3) % Row 20 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{film camera}} - late 19th to early 21st century, used convex lens and film strips} \tn % Row Count 13 (+ 2) % Row 21 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\emph{digital camera}} - advanced photography, 21st century, convex lens, sensor that collects pixels} \tn % Row Count 15 (+ 2) % Row 22 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Largest Telescopes}} - Hubble Space Telescope, Extremely Large Telescope} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}