
ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

OOP shortOOP short

Object Oriented Programming

Encapsulation: Bundling data
and methods that operate on it,
restricting direct access.

Abstraction: Hiding complex
details, presenting a simple
interface.

Inheritance: Child classes can
inherit methods and properties
from parent classes.

Polymorphism: Allows using an
object like its parent while
maintaining its own unique
behavior.

OOPOOP

Encaps
ulation

private public
methods

Abstra‐
ctions

user blindly

Inheri‐
tance

u can replace parent
methods with child
methods

Polymo
rphism

Polymorphism gives
us a way to use an
object exactly like its
parent but keeping its
own methods as they
are

Method Access Control shortMethod Access Control short

Public:
Methods
accessible
by
anyone.

Protected: Only
accessible by the
defining class and
its subclasses.

Private: Only accessible by the
current object; cannot be called
with an explicit receiver.

Method Access ControlMethod Access Control

Public methods can be called by
everyone - no access control is
enforced. A class's instance
methods (these do not belong
only to one object; instead, every
instance of the class can call
them) are public by default;
anyone can call them. The
initialize method is always
private.

Protected methods can be
invoked only by objects of the
defining class and its subcla‐
sses. Access is kept within the
family. However, usage of
protected is limited.

Private methods cannot be
called with an explicit receiver -
the receiver is always self. This
means that private methods can
be called only in the context of
the current object; you cannot
invoke another object's private
methods.

ActiveJobActiveJob

emails

image processing

external API call

analytics calculations

Rails EnigeRails Enige

Rails::Engine allows you
to wrap a specific Rails
application or subset of
functionality and share
it with other
applications or within a
larger packaged
application. Every
Rails::Application is
just an engine, which
allows for simple
feature and application
sharing.
Any Rails::Engine is
also a Rails::Railtie,
so the same methods
(like rake_tasks and
generators) and
configuration options
that are available in
railties can also be
used in engines.
lib/my_engine.rb
module MyEngine
 class Engine <
Rails::Engine
 end
end

RESTfulRESTful

INDEX GET users

NEW GET users/new

SHOW GET users/1

EDIT GET users/1/edit

UPDATE PUT/PATCH
users/1

DELETE GET users/1/d‐
elete

DESTROY DELETE users/1

CREAET POST users

How should you test routesHow should you test routes

Asserts that the
default action is
generated for a route
with no action
assert_generates
"/items", contro‐
ller: "items", action:
"index"
Tests that the list
action is properly
routed
assert_generates
"/items/list",
controller: "items",
action: "list"
Tests the generation
of a route with a
parameter
assert_generates
"/items/list/1", {
controller: "items",
action: "list", id:
"1" }
Asserts that the
generated route gives us
our custom route

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 1 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

How should you test routesHow should you test routes
(cont)(cont)

> assert_generates "changeset‐
s/12", { controller: 'scm', action:
'show_diff', revision: "12" }
Asserts that POSTing to /items
will call the create action on
ItemsController
assert_recognizes({controller:
'items', action: 'create'}, {path:
'items', method: :post})

Active Record shortActive Record short

ORM: Maps
objects to
database tables,
providing
methods to
represent
models, relati‐
onships, and
validations.

Associations:
Defines
relationships
like
has_many,
belongs_to,
and
has_many
:through.

Conventions: Naming conven‐
tions for tables and associations,
e.g., User has many Posts.

ActiveRecordActiveRecord

Active Record is the M in MVC -
the model - which is the layer of
the system responsible for
representing business data and
logic. Active Record facilitates
the creation and use of business
objects whose data requires
persistent storage to a database.
It is an implementation of the
Active Record pattern which
itself is a description of an
Object Relational Mapping
system.

ActiveRecord (cont)ActiveRecord (cont)

In Active Record, objects carry
both persistent data and
behavior which operates on that
data. Active Record takes the
opinion that ensuring data
access logic as part of the object
will educate users of that object
on how to write to and read from
the database.
Active Record gives us several
mechanisms, the most important
being the ability to:
Represent models and their
data.
Represent associations between
these models.
Represent inheritance hierar‐
chies through related models.
Validate models before they get
persisted to the database.
Perform database operations in
an object-oriented fashion.

Object Relational MappingObject Relational Mapping

Object Relational Mapping,
commonly referred to as its
abbreviation ORM, is a
technique that connects the rich
objects of an application to
tables in a relational database
management system. Using
ORM, the properties and relati‐
onships of the objects in an
application can be easily stored
and retrieved from a database
without writing SQL statements
directly and with less overall
database access code.

Active Record conventionsActive Record conventions

user
has_many

posts

Article articles

PostComment post_c‐
omments

Mouse mice

post
belongs_to

user

Fat controllersFat controllers

retrieving data from the model,
transforming it as appropriate for
the view, and then passing it to
the view for rendering

Refactor of modelsRefactor of models

If some code does work from the
point of view of an ActiveRecord
model, it can go into the model.
If some code does work that
spans multiple tables/objects,
and doesn’t really have a clear
owner, it could go into a Service
Object.
Anything that’s attribute-like (like
attributes calculated from
associations or other attributes)
should go into your Active‐
Record model.
If you have logic that has to
orchestrate the saving or
updating of multiple models at
once, it should go into an Active‐
Model Form Object.

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 2 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Refactor of models (cont)Refactor of models (cont)

If code is mostly meant for
displaying or formatting models
in a view, it should go into a
Rails helper or a Presenter.

E-Tags shortE-Tags short

Definition:
Response
headers that
identify a
resource
version, aiding
in caching and
content valida‐
tion.

Usage: If-Non‐
e-Match
header checks
if a resource
has changed,
allowing "304
Not Modified"
responses.

E-tagsE-tags

Definition: An E-tag is a
response header used to identify
a specific version of a resource
on a server. It's often a unique
identifier, such as a hash or a
version number, that changes
whenever the resource changes.

E-tags (cont)E-tags (cont)

Caching: E-tags are crucial for
caching mechanisms. When a
client requests a resource, it
receives an E-tag with the
response. On subsequent
requests, the client can send
this E-tag back to the server with
an "If-None-Match" header,
allowing the server to determine
if the resource has changed. If it
hasn't, the server can respond
with a "304 Not Modified" status,
reducing bandwidth usage by
skipping the resource transfer.

Content Validation: E-tags also
help ensure content integrity. By
comparing E-tags, clients and
servers can verify that they are
accessing the correct version of
a resource, ensuring consis‐
tency between versions.

Implementation: In practice, E-
tags are generated and
managed by the server.
Developers might create custom
logic to generate these tags or
rely on server frameworks that
handle them automatically.

E-tags (cont)E-tags (cont)

E-tags are particularly useful in:
Web APIs: For API responses,
E-tags help reduce data transfer
and ensure clients receive the
latest information. Static
Content: For web pages, CSS
files, and JavaScript assets, E-
tags prevent redundant
downloads, speeding up page
loads.

SOLID shortSOLID short

Single
Responsib‐
ility: A class
should handle
one respon‐
sibility.

Open/Closed:
Classes should
be open for
extension but
closed for
modification.

Liskov Substi‐
tution:
Subtypes
should be
substitutable
for their
parent types.

Interface
Segregation:
Clients
shouldn't
depend on
unused interf‐
aces.

Dependency Inversion: High-
level modules should depend on
abstractions, not low-level
modules.

SOLIDSOLID

Single Responsibility Principle:
A class should have only one
reason to change, meaning it
should handle a single respon‐
sibility or functionality. This helps
create modular code that's
easier to understand and
maintain.

SOLID (cont)SOLID (cont)

Open/Closed Principle: Software
entities (such as classes or
functions) should be open for
extension but closed for modifi‐
cation. This means you should
be able to add new functionality
without altering existing code,
typically through inheritance or
composition.

Liskov Substitution Principle:
Subtypes should be substi‐
tutable for their base types. In
other words, derived classes
should be able to replace their
parent classes without affecting
the functionality of the applic‐
ation.

Interface Segregation Principle:
Clients should not be forced to
depend on interfaces they do
not use. This encourages the
creation of small, specific interf‐
aces, rather than large, general
ones, making the design more
flexible and reducing coupling.

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 3 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

SOLID (cont)SOLID (cont)

Dependency Inversion Principle:
High-level modules should not
depend on low-level modules;
both should depend on abstra‐
ctions. This means code should
rely on abstract interfaces rather
than concrete implementations,
promoting decoupling and
making the system easier to
extend and maintain.

selfself

The keyword self in Ruby gives
you access to the current object
– the object that is receiving the
current message. To explain: a
method call in Ruby is actually
the sending of a message to a
receiver

Ruby method lookup pathRuby method lookup path

user User Parent::
User

Object

Ruby callbacksRuby callbacks

Create Update

before_save;
before_valid‐
ation

after_update;
after_commit

Destroying Touch

around_de‐
stroy; after_rol‐
lback

after_initia‐
lize; after_find

Proc and lambdaProc and lambda

Lambda Proc

Proc class
(lambda)

Proc class

checks the
number of
arguments
passed to it

proc does not

lambda
returns, it
passes
control back
to the calling
method

proc returns, it
does so immedi‐
ately, without
going back to the
calling method

Asset PipelineAsset Pipeline

The asset pipeline provides a
framework to concatenate and
minify or
compress JavaScript and CSS
assets. It also adds the ability to
write these assets
in other languages and pre-pr‐
ocessors such as CoffeeScript,
Sass, and ERB

Caching shortCaching short

Page
Caching:
Caches
entire pages
directly to
disk.

Action Caching:
Similar to page
caching but runs
before filters.

Caching short (cont)Caching short (cont)

Fragment
Caching:
Caches
parts of
views
separa‐
tely.

Low-Level
Caching: Allows
caching values or
query results,
reducing database
load.

Caching 1/2Caching 1/2

Page caching
is a Rails
mechanism
which allows
the request
for a
generated
page to be
fulfilled by the
web server
(i.e. Apache
or NGINX)
without having
to go through
the entire
Rails stack.
While this is
super fast it
can't be
applied to
every
situation
(such as
pages that
need authen‐
tication). Also,
because the
web server is
serving a file
directly from
the filesystem
you will need
to implement
cache expira‐
tion.

Page Caching
cannot be used
for actions that
have before
filters - for
example,
pages that
require authen‐
tication. This is
where Action
Caching comes
in. Action
Caching works
like Page
Caching except
the incoming
web request
hits the Rails
stack so that
before filters
can be run on
it before the
cache is
served. This
allows authen‐
tication and
other restri‐
ctions to be run
while still
serving the
result of the
output from a
cached copy.

Caching 1/2 (cont)Caching 1/2 (cont)

Dynamic web applications
usually build pages with a
variety of components not all of
which have the same caching
characteristics. When different
parts of the page need to be
cached and expired separately
you can use Fragment Caching.
Fragment Caching allows a
fragment of view logic to be
wrapped in a cache block and
served out of the cache store
when the next request comes in.

Caching 2/2Caching 2/2

Low-level SQL caching

Sometimes
you need to
cache a
particular
value or
query result
instead of
caching
view
fragments.
Rails'
caching
mechanism
works great
for storing
any kind of
information.

Query caching is
a Rails feature
that caches the
result set
returned by each
query. If Rails
encounters the
same query
again for that
request, it will
use the cached
result set as
opposed to
running the query
against the
database again.

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 4 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Caching 2/2 (cont)Caching 2/2 (cont)

Rails.cache.fetch("#
{cache_key_with_v‐
ersion}/competing_‐
price", expires_in:
12.hours) do
Competitor::API.fi‐
nd_price(id) end

User.f‐
irst;
User.first

MigrationsMigrations

Rails provides a set of rake
tasks to work with migrations
which boil down to running
certain sets of migrations.
The very first migration related
rake task you will use will
probably be rake db:migrate. In
its most basic form it just runs
the up or change method for all
the migrations that have not yet
been run. If there are no such
migrations, it exits. It will run
these migrations in order based
on the date of the migration.

Migrations (cont)Migrations (cont)

Note that running the db:migrate
also invokes the db:sch‐
ema:dump task, which will
update your db/schema.rb file to
match the structure of your
database.

AssociationsAssociations

belongs_to

has_one

has_many

has_many :through

has_one :through

has_and_belongs_to_many

scopesscopes

Scoping allows you to specify
commonly-used queries(it can
be considered as a shortcut for
long or most frequently used
queries) which can be
referenced as method calls on
the association objects or
models. With these scopes, you
can use every method
previously covered such as
where, joins and includes. All
scope methods will return an
ActiveRecord::Relation object
which will allow for further
methods (such as other scopes)
to be called on it.

Basic infoBasic info

Class is the
blueprint from
which
individual
objects are
created

class variables
are shared
between a
class and all its
subclasses

Objects are
instances of
the class.

class instance
variables only
belong to one
specific class

Use a constructor in RubyUse a constructor in Ruby

def initialize({});end;

getter and setter methods ingetter and setter methods in
RubyRuby

attr_reader

attr_accessor

Class and a moduleClass and a module

Modules are collections of
methods and constants.

They cannot generate instances.
Classes may generate instances
(objects), and have per-instance
state (instance variables).

everything is an object in Rubyeverything is an object in Ruby

Every data type that we work
with is a class and classes are
objects. Even the Object class is
an object. Strings, integers,
floats, hashes, arrays, symbols,
classes, modules, errors and
more are all objects.

RackRack

Rack is the underlying
technology behind nearly all of
the web frameworks in the Ruby
world.
"Rack" is actually a few different
things:
An architecture - Rack defines a
very simple interface, and any
code that conforms
to this interface can be used in a
Rack application. This makes it
very easy to build small,
focused, and reusable bits of
code and then use Rack to
compose these bits into a larger
application.
A Ruby gem - Rack is is distri‐
buted as a Ruby gem that
provides the glue code needed
to compose our code.
require "rack"
require "thin"
class HelloWorld
def call(env)

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 5 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Rack (cont)Rack (cont)

[200, { "Content-Type" => "tex‐
t/plain" }, ["Hello World"]]
end
end
Rack::Handler::Thin.run HelloW‐
orld.new
https://github.com/sunlightlabs/r‐
ack-honeypot
Rack defines a very simple
interface. Rack compliant code
must have the following three
characteristics:
It must respond to call
The call method must accept a
single argument -
This argument is typically called
env or environment, and it
bundles all of the data about the
request.
The call method must return an
array of three elements These
elements are, in order,
status for the HTTP status code,
headers, and body for the actual
content of the response.

Rack (cont)Rack (cont)

A nice side effect of the call
interface is that procs and
lambdas can be used as Rack
objects.
Middleware are the building
blocks of larger applications built
using the Rack pattern.
Each middleware is a Rack
compatible application, and our
final application is built by
composing together, or nesting
these middleware.
Unlike base Rack apps,
middleware must be classes as
they need to have an initializer
which will be passed the next
app in the chain.
For our first middleware
example, we'll introduce a
middleware that logs the amount
of time the request took and
adds that to the response.

Rack (cont)Rack (cont)

To begin, we'll update our core
Rack app to sleep for 3 seconds
to give us something worth
logging, and then we'll build our
middleware:
Rack::Handler::Thin.run Loggin‐
gMiddleware.new(app)
Middleware are perfect for non-
app specific logic.
Things like setting caching
headers, logging, parsing the
request object, etc. all are great
use cases for Rack middleware.
For example, in Rails, cookie
parsing, sessions, and param
parsing are all handled by
Middleware.

Rack MiddlewareRack Middleware

require "rack"
require "thin"
app = -> (env) do
 sleep 3
 [200, { "Content-
Type" => "text/p‐
lain" }, ["Hello
World\n"]]

Rack Middleware (cont)Rack Middleware (cont)

> end
class LoggingMiddleware
 def initialize(app)
 @app = app
 end
 def call(env)
 before = Time.now.to_i
 status, headers, body =
@app.call(env)
 after = Time.now.to_i
 log_message = "App took #
{after - before} seconds."
 [status, headers, body <<
log_message]
 end
end
Rack::Handler::Thin.run Loggin‐
gMiddleware.new(app)

optimistic pessimistic lockingoptimistic pessimistic locking

Optimistic Pessimistic

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 6 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
https://github.com/sunlightlabs/rack-honeypot
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

optimistic pessimistic lockingoptimistic pessimistic locking
(cont)(cont)

Optimistic
locking is a
mechanism
to prevent
data
overrides
by
assuming
that a
database
transaction
conflict
rarely
happens

When one user is
editing a record
and we maintain
an exclusive lock
on that record,
another user is
prevented from
modifying this
record until the
lock is released or
the transaction is
completed. This
explicit locking is
known as a
pessimistic lock

uses a "version-number" column
to track changes in each table
that needs to implement
concurrent access

Optimistic locking is just a
mechanism to prevent
processes from overwriting
changes by another process.
Optimistic locking is not a magic
wand to manage or auto-merge
any conflicting changes. It can
only allow users to alert or notify
about such conflicting changes.

optimistic pessimistic lockingoptimistic pessimistic locking
(cont)(cont)

Optimistic locking works by just
comparing the value of the "ver‐
sion" column. Thus, optimistic
locking is not a real database
lock

multiple users can
read the same
resource at the
same time but if
more then one tries
to modify the
database , then we
prevent it

multiple
users
will not
be able
to read
while
others
are
reading

Advisory Lock

optimistic pessimistic lockingoptimistic pessimistic locking
(cont)(cont)

An advisory lock is a voluntary
locking mechanism that requires
transactions to explicitly request
and release locks on resources.
How it works: Transactions
explicitly acquire advisory locks
on resources, signaling to other
transactions that they should
also respect these locks.
Advisory locks don't inherently
block transactions; instead, they
rely on voluntary adherence.
Use cases: Advisory locks are
useful in systems where
developers want fine-grained
control over concurrency or
when specific business logic
dictates locking behavior, such
as file management systems.

postgres indexespostgres indexes

B-tree Index:
Default type,
suitable for
equality (=) and
range queries (<,
>, BETWEEN).

Hash
Index:
Optimized
for
equality
compar‐
isons (=).

postgres indexes (cont)postgres indexes (cont)

GIN Index:
Useful for
indexing
array,
JSONB, and
full-text
search
fields.

GiST Index:
Flexible structure
for complex data
types, including
geometric and
range queries.

Partial Index: create index
where condition

The order of columns in a multi-‐
column index affects how well it
optimizes queries. Consider
these factors: Query Patterns:
Place the column most
frequently used in queries or
filters first. This increases the
chances of the index being
utilized effectively. Selective
Columns: Columns with high
selectivity (i.e., a wide range of
unique values) should appear
first. This maximizes the
potential for early filtering.
Combining Columns: If queries
often filter by a combination of
columns, ensure the index order
matches the most common
query patterns.

Highiest cardinality means
better index. Columns with high
cardinality have many unique
values relative to the total
number of rows.

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 7 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

singleton methods, Eigenclasssingleton methods, Eigenclass

In Ruby, a class is an object.
Indeed, a class is literally an
instance of the class Class The
eigenclass is an unnamed
instance of the class Class
attached to an object and which
instance methods are used as
singleton methods of the defined
object.

RubyGemsRubyGems

The RubyGems software allows
you to easily download, install,
and use ruby software packages
on your system.
The software package is called
a “gem” which contains a
packaged Ruby application or
library.

EigenclassEigenclass

An
eigenclass is
a unique,
anonymous
class
associated
with an
individual
object in
Ruby. It
allows for the
addition of
methods
directly to
that object,
without
affecting
other
instances of
its class.

Every Ruby
object has an
associated
eigenclass,
which is created
automatically
the first time a
singleton
method (a
method defined
only for that
specific object)
is added to it.
The eigenclass
stores these
singleton
methods.

Eigenclass (cont)Eigenclass (cont)

Eigenclasses can be useful in
Rails for extending or modifying
specific instances of classes
without affecting the class as a
whole: Singleton Methods: You
might use a singleton method to
add behavior directly to an
individual object, such as a
single instance of a model,
without altering its class defini‐
tion. Meta-Programming:
Eigenclasses play a role in
meta-programming techniques,
allowing for dynamic modifi‐
cations to objects.

class User < ApplicationRecord
end user = User.find(1) def
user.greet "Hello, #{self.name}!"
end puts user.greet # Outputs "‐
Hello, [User's name]!"

build your own Ruby gembuild your own Ruby gem

.gemspec

lib/mygem

gem build .gemspec

Use the basic lib/gem.rb and
lib/gem/ structure for code.

Put any executables in bin, any
data files in data and tests in
test or spec.

build your own Ruby gem (cont)build your own Ruby gem (cont)

Don't require or depend upon
files outside of the load path.
(VERSION files often seem to
live in odd places in gems.)

Do not require 'rubygems'.

Do not tamper with the $LOAD_‐
PATH.

Favourites gemsFavourites gems

rspec cancancan Active‐
ModelS‐
eri‐
alizers

capistrano sidekiq annotate

Filters in controllersFilters in controllers

class ChangesController
< ApplicationController
 around_action
:wrap_in_transa‐
ction, only: :show

 private

 def wrap_in_tran‐
saction
 ActiveRec‐
ord::Base.trans‐
action do
 begin
 yield
 ensure
 raise
ActiveRecord::R‐
ollback
 end
 end
 end
end

Strong paramsStrong params

Strong Parameters is a feature
of Rails that prevents assigning
request parameters to objects
unless they have been explicitly
permitted. It has its own DSL
(Domain Specific Language, or
in other words, a predefined
syntax it understands), that
allows you to indicate what
parameters should be allowed. It
also lets you indicate if each
parameter should be a hash,
array or scalar (i.e. integer,
string, etc.), as well as some
other functionality

Controller specsController specs

Send http requests to applic‐
ation and writing assertions
about the response.

yield, content_foryield, content_for

They are opposite ends of the
rendering process, with yield
specifying where content goes,
and content_for specifying what
the actual content is.

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 8 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

yield, content_for (cont)yield, content_for (cont)

The best practice is to use yield
in your layouts, and content_for
in your views. There is a special
second use for content_for,
where you give it no block and it
returns the previously rendered
content. This is primarily for use
in helper methods where yield
cannot work. Within your views,
the best practice is to stick to
yield :my_content to recall the
content, and content_for :my_co‐
ntent do...end to render the
content.

nested layoutsnested layouts

This is a live content block, but has
not yet been populated. Please
check back soon.

SecuritySecurity

Content Security
Policy

xss inj

https://rails-s‐
qli.org/

sql inj

use ssl session
hijacking

reset_session
(expire)

session
fixation

PasswordPassword

Iterate over an HMAC with a
random salt for about a 100ms
duration and save the salt with
the hash. Use functions such as
password_hash, PBKDF2,
Bcrypt and similar functions.

https (ssl)https (ssl)

HTTPS protects the commun‐
ication between your browser
and server from being interc‐
epted and tampered with by
attackers. This provides confid‐
entiality, integrity and authentic‐
ation to the vast majority of
today's WWW traffic. Any
website that shows a lock icon in
the address bar is using HTTPS

Unit testingUnit testing

In computer programming, unit
testing is a software testing
method by which individual units
of source code—sets of one or
more computer program
modules together with
associated control data, usage
procedures, and operating
procedures—are tested to
determine whether they are fit
for use

PatternsPatterns

Creational Structural Behaviour

Abstract
Factory is
a
creational
design
pattern
that lets
you
produce
families of
related
objects
without
specifying
their
concrete
classes.

Adapter
is a
structural
design
pattern
that
allows
objects
with
incomp‐
atible
interfaces
to collab‐
orate.

Observer is
a
behavioral
design
pattern that
lets you
define a
subscr‐
iption
mechanism
to notify
multiple
objects
about any
events that
happen to
the object
they’re
observing.

Patterns (cont)Patterns (cont)

Singletone Decorator
is a
structural
design
pattern
that lets
you attach
new
behaviors
to objects
by placing
these
objects
inside
special
wrapper
objects
that
contain
the
behaviors.

Command
is a
behavioral
design
pattern
that turns
a request
into a
stand-‐
alone
object that
contains
all inform‐
ation
about the
request.
This
transform‐
ation lets
you
parame‐
terize
methods
with
different
requests,
delay or
queue a
request’s
execution,
and
support
undoable
operat‐
ions.

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 9 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
https://cheatography.com/help/live-content/
https://rails-sqli.org/
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Patterns (cont)Patterns (cont)

Prototype Facade Chain
of
respon
sibility

Factory
Method is a
creational
design
pattern that
provides an
interface for
creating
objects in a
superclass,
but allows
subclasses
to alter the
type of
objects that
will be
created.

Bridge is a
structural design
pattern that lets
you split a large
class or a set of
closely related
classes into two
separate hierar‐
chies—abstra‐
ction and
implementation
—which can be
developed
independently of
each other.

What is the primary techniqueWhat is the primary technique
for writing a testfor writing a test

Test actual result of execution,
integration tests, rather than only
unit tests. Write scenario as a
complex test

EigenclassEigenclass

An
eigenclass is
a unique,
anonymous
class
associated
with an
individual
object in
Ruby. It
allows for the
addition of
methods
directly to
that object,
without
affecting
other
instances of
its class.

Every Ruby
object has an
associated
eigenclass,
which is created
automatically
the first time a
singleton
method (a
method defined
only for that
specific object)
is added to it.
The eigenclass
stores these
singleton
methods.

Eigenclass (cont)Eigenclass (cont)

Eigenclasses can be useful in
Rails for extending or modifying
specific instances of classes
without affecting the class as a
whole: Singleton Methods: You
might use a singleton method to
add behavior directly to an
individual object, such as a
single instance of a model,
without altering its class defini‐
tion. Meta-Programming:
Eigenclasses play a role in
meta-programming techniques,
allowing for dynamic modifi‐
cations to objects.

`class User < ApplicationRecord
end user = User.find(1) def
user.greet "Hello, #{self.name}!"
end puts user.greet # Outputs "‐
Hello, [User's name]!"`

By Abdulla AchilovAbdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 10 of 10.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
http://crosswordcheats.com

	ruby-interview-seniour Cheat Sheet - Page 1
	OOP short
	Method Access Control short
	ActiveJob
	RESTful
	Rails Enige
	Method Access Control
	How should you test routes
	OOP

	ruby-interview-seniour Cheat Sheet - Page 2
	Object Relational Mapping
	Fat controllers
	Refactor of models
	Active Record short
	Active Record conventions
	ActiveRecord

	ruby-interview-seniour Cheat Sheet - Page 3
	E-Tags short
	SOLID short
	E-tags
	SOLID

	ruby-interview-seniour Cheat Sheet - Page 4
	Proc and lambda
	Caching 1/2
	self
	Caching 2/2
	Asset Pipeline
	Ruby method lookup path
	Ruby callbacks
	Caching short

	ruby-interview-seniour Cheat Sheet - Page 5
	Basic info
	Rack
	Associations
	Migrations
	Use a constructor in Ruby
	getter and setter methods in Ruby
	scopes
	Class and a module
	everything is an object in Ruby

	ruby-interview-seniour Cheat Sheet - Page 6
	Rack Middleware
	optimistic pessimistic locking

	ruby-interview-seniour Cheat Sheet - Page 7
	postgres indexes

	ruby-interview-seniour Cheat Sheet - Page 8
	singleton methods, Eigenclass
	Strong params
	Favourites gems
	RubyGems
	Filters in controllers
	Controller specs
	Eigenclass
	build your own Ruby gem
	yield, content_for

	ruby-interview-seniour Cheat Sheet - Page 9
	Password
	Patterns
	https (ssl)
	nested layouts
	Unit testing
	Security

	ruby-interview-seniour Cheat Sheet - Page 10
	What is the primary technique for writing a test
	Eigenclass

