Cheatography

OOP short

Object Oriented Programming

Encapsulation: Bundling data
and methods that operate on it,
restricting direct access.

Abstraction: Hiding complex
details, presenting a simple
interface.

Inheritance: Child classes can
inherit methods and properties
from parent classes.

Polymorphism: Allows using an
object like its parent while
maintaining its own unique
behavior.

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Method Access Control short

Public: Protected: Only
Methods accessible by the
accessible defining class and
by its subclasses.
anyone.

Private: Only accessible by the
current object; cannot be called
with an explicit receiver.

Encaps private public

ulation methods

Abstra- user blindly

ctions

Inheri- u can replace parent

tance methods with child
methods

Polymo Polymorphism gives

rphism us a way to use an

object exactly like its
parent but keeping its
own methods as they
are

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Method Access Control

Public methods can be called by
everyone - no access control is
enforced. A class's instance
methods (these do not belong
only to one object; instead, every
instance of the class can call
them) are public by default;
anyone can call them. The
initialize method is always
private.

Protected methods can be
invoked only by objects of the
defining class and its subcla-
sses. Access is kept within the
family. However, usage of
protected is limited.

Private methods cannot be
called with an explicit receiver -
the receiver is always self. This
means that private methods can
be called only in the context of
the current object; you cannot
invoke another object's private
methods.

Published 1st May, 2024.
Last updated 1st May, 2024.

Page 1 of 10.

ActiveJob

emails

image processing
external API call

analytics calculations

Rails Enige

Rails::Engine allows you
to wrap a specific Rails
application or subset of
functionality and share
it with other
applications or within a
larger packaged
application. Every
Rails::Application is
just an engine, which
allows for simple
feature and application
sharing.
Any Rails: :Engine is
also a Rails: :Ra iltie,
so the same methods
(like rake tasks and
genera tors) and
config uration options
that are available in
railties can also be
used in engines.
lib/my en gine.rb
module MyEngine

class Engine <
Rails: :Engine

end

INDEX GET users

NEW GET users/new

SHOW GET users/1

EDIT GET users/1/edit

UPDATE PUT/PATCH
users/1

DELETE GET users/1/d-
elete

DESTROY DELETE users/1

CREAET POST users

How should you test routes

Asserts that the
default action is
generated for a route
with no action

assert _ge nerates

" /it ems ", contro -
ller: " ite ms", action:
" ind ex"

Tests that the list
action is properly
routed

assert _ge nerates

" /it ems /1li st",

contro ller: ite ms",

action: " lis t"

Tests the generation
of a route with a
parameter

assert _ge nerates

" /it ems /1i st/ 1", {
contro ller: " ite ms",

action:

noqn }

" lis t", id:

Asserts that the
generated route gives us

our custom route

Sponsored by Readable.com
Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

Cheatography

How should you test routes
(cont)

> assert_generates "changeset-
s/12", { controller: 'scm’, action:
'show_diff', revision: "12" }

Asserts that POSTing to /items
will call the create action on
ItemsController
assert_recognizes({controller:
'items', action: 'create'}, {path:
'items’, method: :post})

Active Record short

ORM: Maps Associations:
objects to Defines
database tables, relationships
providing like

methods to has_many,
represent belongs_to,
models, relati- and

onships, and has_many
validations. :through.

Conventions: Naming conven-
tions for tables and associations,
e.g., User has many Posts.

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

ActiveRecord (cont)

In Active Record, objects carry
both persistent data and
behavior which operates on that
data. Active Record takes the
opinion that ensuring data
access logic as part of the object
will educate users of that object
on how to write to and read from
the database.

Active Record gives us several
mechanisms, the most important
being the ability to:

Represent models and their
data.

Represent associations between
these models.

Represent inheritance hierar-
chies through related models.
Validate models before they get
persisted to the database.
Perform database operations in
an object-oriented fashion.

ActiveRecord

Active Record is the M in MVC -
the model - which is the layer of
the system responsible for
representing business data and
logic. Active Record facilitates
the creation and use of business
objects whose data requires
persistent storage to a database.
It is an implementation of the
Active Record pattern which
itself is a description of an
Object Relational Mapping
system.

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.

Page 2 of 10.

Object Relational Mapping

Object Relational Mapping,
commonly referred to as its
abbreviation ORM, is a
technique that connects the rich
objects of an application to
tables in a relational database
management system. Using
ORM, the properties and relati-
onships of the objects in an
application can be easily stored
and retrieved from a database
without writing SQL statements
directly and with less overall
database access code.

Active Record conventions

user posts
has_many
Article articles
PostComment post_c-
omments
Mouse mice
post user
belongs_to

Fat controllers

retrieving data from the model,
transforming it as appropriate for
the view, and then passing it to
the view for rendering

Refactor of models

If some code does work from the
point of view of an ActiveRecord
model, it can go into the model.
If some code does work that
spans multiple tables/objects,
and doesn’t really have a clear
owner, it could go into a Service
Object.

Anything that’s attribute-like (like
attributes calculated from
associations or other attributes)
should go into your Active-
Record model.

If you have logic that has to
orchestrate the saving or
updating of multiple models at
once, it should go into an Active-
Model Form Object.

Sponsored by Readable.com
Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

Cheatography

Refactor of models (cont)

If code is mostly meant for

displaying or formatting models

in a view, it should go into a

Rails helper or a Presenter.

Definition: Usage: If-Non-
Response e-Match
headers that header checks
identify a if a resource
resource has changed,
version, aiding allowing "304
in caching and Not Modified"
content valida- responses.

tion.

Definition: An E-tag is a
response header used to identify
a specific version of a resource
on a server. It's often a unique
identifier, such as a hash or a
version number, that changes
whenever the resource changes.

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

E-tags (cont) E-tags (cont)

Caching: E-tags are crucial for
caching mechanisms. When a
client requests a resource, it
receives an E-tag with the
response. On subsequent
requests, the client can send
this E-tag back to the server with
an "If-None-Match" header,
allowing the server to determine
if the resource has changed. If it
hasn't, the server can respond
with a "304 Not Modified" status,
reducing bandwidth usage by
skipping the resource transfer.

Content Validation: E-tags also
help ensure content integrity. By
comparing E-tags, clients and
servers can verify that they are
accessing the correct version of
a resource, ensuring consis-
tency between versions.

Implementation: In practice, E-
tags are generated and
managed by the server.
Developers might create custom
logic to generate these tags or
rely on server frameworks that
handle them automatically.

Published 1st May, 2024.
Last updated 1st May, 2024.

Page 3 of 10.

E-tags are particularly useful in:
Web APIs: For API responses,
E-tags help reduce data transfer
and ensure clients receive the
latest information. Static
Content: For web pages, CSS
files, and JavaScript assets, E-
tags prevent redundant
downloads, speeding up page
loads.

Single Open/Closed:
Responsib- Classes should
ility: A class be open for
should handle extension but
one respon- closed for
sibility. modification.
Liskov Substi- Interface
tution: Segregation:
Subtypes Clients
should be shouldn't
substitutable depend on

for their unused interf-

parent types. aces.

Dependency Inversion: High-
level modules should depend on
abstractions, not low-level
modules.

SOLID

Single Responsibility Principle:

A class should have only one
reason to change, meaning it
should handle a single respon-
sibility or functionality. This helps
create modular code that's
easier to understand and
maintain.

SOLID (cont)

Open/Closed Principle: Software
entities (such as classes or
functions) should be open for
extension but closed for modifi-
cation. This means you should
be able to add new functionality
without altering existing code,
typically through inheritance or
composition.

Liskov Substitution Principle:
Subtypes should be substi-
tutable for their base types. In
other words, derived classes
should be able to replace their
parent classes without affecting
the functionality of the applic-
ation.

Interface Segregation Principle:
Clients should not be forced to
depend on interfaces they do
not use. This encourages the
creation of small, specific interf-
aces, rather than large, general
ones, making the design more
flexible and reducing coupling.

Sponsored by Readable.com
Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

SOLID (cont) Proc and lambda Caching short (cont)

Cheatography

Caching 1/2 (cont)

Dependency Inversion Principle: Lambda Proc Fragment Low-Level Dynamic web applications
High-level modules should not Proc class Proc class Caching: Caching: Allows usually build pages with a
depend on low-level modules; (lambda) Caches caching values or variety of components not all of
both should depend on abstra- arts of uery results, which have the same cachin
P checks the proc does not P query 9
ctions. This means code should number of views reducing database characteristics. When different
rely on abstract interfaces rather S separa- load. parts of the page need to be
than concrete implementations, . tely. cached and expired separately
passed to it
promoting decoupling and you can use Fragment Caching.
making the system easier to lambda proc returns, it Caching 1/2 Fragment Caching allows a
— returns, it does so immedi- . .
extend and maintain. passes ately, without Page caching Page Caching fragment .of view logic to be
’ is a Rails cannot be used wrapped in a cache block and
control back going back to the served out of the cache store
to the calling calling method meshianism foractionsitaat
The keyword self in Ruby gives which allows have before when the next request comes in.

method

you access to the current object the request filters - for]
— the object that is receiving the for a example,
current message. To explain: a generated pages that Low-level SQL caching
method call in Ruby is actually U2 EESEL PIREE BTe elEs & page to be require authen- Sometimes Query caching is
the sending of a message to a framework to concatenate and fulfilled by the tication. This is youneed to a Rails feature
receiver minify or web server where Action cache a that caches the
compress JavaScript and CSS (i.e. Apache Caching comes particular result set
assets. It also adds the ability to - 5Ny in. Action valus o retured by each

write these assets

. ; without having Caching works uery result uerv. If Rails
user User Parent: Object . .. languages and pre-pr- . " ke p q Yy query.
User has CoffeeScrint © go e, e FEge instead of encounters the
cS)cessorsdsI:ci;Bas ML the entire Caching except caching same query
ass, an . :)
Ruby callbacks Rails stack. the incoming view again for that
While this i web request fragments. request, it will
Create Ll CEILgEen superfastit hits the Rails Rals Jse the cached
before_save; after_update; Page Action Caching: can't be stack so that caching result set as
before_valid- after_commit Caching: Similar to page applied to before filters mechanism opposed to
ation Caches caching butruns every can be run on works great running the query
Destroying Touch entire pages before filters. situation it before the for storing against the
around_de- after initia- directly to (such as cache is anykind of database again.
stroy; after_rol- lize; after_find disk. pages that served. This information.

Iback

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

need authen-
tication). Also,
because the
web server is
serving a file
directly from
the filesystem
you will need
to implement
cache expira-
tion.

allows authen-
tication and
other restri-
ctions to be run
while still
serving the
result of the
output from a
cached copy.

Published 1st May, 2024.
Last updated 1st May, 2024.

Page 4 of 10.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

Cheatography

Caching 2/2 (cont)

Rails.cache.fetch("# User.f-
{cache_key_with_v- irst;
ersion}/competing_- User.first

price", expires_in:
12.hours) do
Competitor::API.fi-
nd_price(id) end

Rails provides a set of rake

tasks to work with migrations
which boil down to running
certain sets of migrations.

The very first migration related
rake task you will use will
probably be rake db:migrate. In
its most basic form it just runs
the up or change method for all
the migrations that have not yet
been run. If there are no such
migrations, it exits. It will run
these migrations in order based
on the date of the migration.

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Note that running the db:migrate
also invokes the db:sch-
ema:dump task, which will
update your db/schema.rb file to
match the structure of your
database.

Associations

belongs_to
has_one
has_many
has_many :through
has_one :through

has_and_belongs_to_many

Scoping allows you to specify

commonly-used queries(it can
be considered as a shortcut for
long or most frequently used
queries) which can be
referenced as method calls on
the association objects or
models. With these scopes, you
can use every method
previously covered such as
where, joins and includes. All
scope methods will return an
ActiveRecord::Relation object
which will allow for further
methods (such as other scopes)
to be called on it.

Published 1st May, 2024.
Last updated 1st May, 2024.

Page 5 of 10.

Class is the class variables Rack is the underlying

blueprint from are shared technology behind nearly all of
which between a the web frameworks in the Ruby
individual class and all its world.

objects are subclasses "Rack" is actually a few different

created things:

An architecture - Rack defines a

Objects are class instance

very simple interface, and any

instances of variables only

code that conforms

the class. belong to one

specific class to this interface can be used in a

Rack application. This makes it

Use a constructor in Ruby vy @2y e bdlie sl

definitiali p focused, and reusable bits of
ef initialize(f}):end: code and then use Rack to

compose these bits into a larger
getter and setter methods in

application.
Ruby

A Ruby gem - Rack is is distri-
attr_reader buted as a Ruby gem that

attr_accessor provides the glue code needed

to compose our code.
require "rack"

Class and a module

. require "thin"
Modules are collections of q

| HelloWorld
methods and constants. class Heflowor

def call(env)

They cannot generate instances.
Classes may generate instances
(objects), and have per-instance
state (instance variables).

everything is an object in Ruby

Every data type that we work
with is a class and classes are
objects. Even the Object class is
an object. Strings, integers,
floats, hashes, arrays, symbols,
classes, modules, errors and
more are all objects.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

Cheatography

Rack (cont)

[200, { "Content-Type" => "tex-
t/plain” }, ["Hello World"]]

end

end

Rack::Handler::Thin.run HelloW-
orld.new
https://github.com/sunlightlabs/r-
ack-honeypot

Rack defines a very simple
interface. Rack compliant code
must have the following three
characteristics:

It must respond to call

The call method must accept a
single argument -

This argument is typically called
env or environment, and it
bundles all of the data about the
request.

The call method must return an
array of three elements These
elements are, in order,

status for the HTTP status code,
headers, and body for the actual
content of the response.

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Rack (cont) Rack Middleware (cont)

Rack (cont)

A nice side effect of the call
interface is that procs and
lambdas can be used as Rack
objects.

Middleware are the building
blocks of larger applications built
using the Rack pattern.

Each middleware is a Rack
compatible application, and our
final application is built by
composing together, or nesting
these middleware.

Unlike base Rack apps,
middleware must be classes as
they need to have an initializer
which will be passed the next
app in the chain.

For our first middleware
example, we'll introduce a
middleware that logs the amount
of time the request took and
adds that to the response.

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.

Page 6 of 10.

To begin, we'll update our core
Rack app to sleep for 3 seconds
to give us something worth
logging, and then we'll build our
middleware:
Rack::Handler::Thin.run Loggin-
gMiddleware.new(app)
Middleware are perfect for non-
app specific logic.

Things like setting caching
headers, logging, parsing the
request object, etc. all are great
use cases for Rack middleware.
For example, in Rails, cookie
parsing, sessions, and param
parsing are all handled by
Middleware.

Rack Middleware

require "rack"
require " thi n"
app = —-> (env) do
sleep 3

[200, { " Con ten t-
T ype " => " tex t/p -
lai n"™ }, ["Hello

World \n"]]

> end
class LoggingMiddleware
def initialize(app)
@app = app
end
def call(env)
before = Time.now.to_i
status, headers, body =
@app.call(env)
after = Time.now.to_i
log_message = "App took #
{after - before} seconds."
[status, headers, body <<
log_message]
end
end
Rack::Handler::Thin.run Loggin-
gMiddleware.new(app)

optimistic pessimistic locking

Optimistic Pessimistic

Sponsored by Readable.com
Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
https://github.com/sunlightlabs/rack-honeypot
http://www.cheatography.com/artifactzone/
https://readable.com

Cheatography

optimistic pessimistic locking
(cont)

Optimistic When one user is
lockingisa editing a record
mechanism and we maintain
to prevent an exclusive lock
data on that record,
overrides another user is
by prevented from
assuming modifying this
that a record until the
database lock is released or
transaction the transaction is
conflict completed. This
rarely explicit locking is
happens known as a

pessimistic lock

uses a "version-number" column
to track changes in each table
that needs to implement
concurrent access

Optimistic locking is just a
mechanism to prevent
processes from overwriting
changes by another process.
Optimistic locking is not a magic
wand to manage or auto-merge
any conflicting changes. It can
only allow users to alert or notify
about such conflicting changes.

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

optimistic pessimistic locking

(cont)

Optimistic locking works by just
comparing the value of the "ver-
sion" column. Thus, optimistic
locking is not a real database

lock
multiple users can multiple
read the same users
resource at the will not
same time but if be able
more then one tries to read
to modify the while
database , then we others
prevent it are
reading

Advisory Lock

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.

Page 7 of 10.

optimistic pessimistic locking
(cont)

An advisory lock is a voluntary
locking mechanism that requires
transactions to explicitly request
and release locks on resources.
How it works: Transactions
explicitly acquire advisory locks
on resources, signaling to other
transactions that they should
also respect these locks.
Advisory locks don't inherently
block transactions; instead, they
rely on voluntary adherence.
Use cases: Advisory locks are
useful in systems where
developers want fine-grained
control over concurrency or
when specific business logic
dictates locking behavior, such
as file management systems.

postgres indexes

B-tree Index: Hash

Default type, Index:

suitable for Optimized

equality (=) and for

range queries (<, equality

> BETWEEN). compar-
isons (=).

postgres indexes (cont)

GIN Index: GiST Index:
Useful for Flexible structure
indexing for complex data
array, types, including
JSONB, and geometric and
full-text range queries.
search

fields.

Partial Index: create index
where condition

The order of columns in a multi--
column index affects how well it
optimizes queries. Consider
these factors: Query Patterns:
Place the column most
frequently used in queries or
filters first. This increases the
chances of the index being
utilized effectively. Selective
Columns: Columns with high
selectivity (i.e., a wide range of
unique values) should appear
first. This maximizes the
potential for early filtering.
Combining Columns: If queries
often filter by a combination of
columns, ensure the index order
matches the most common
query patterns.

Highiest cardinality means
better index. Columns with high
cardinality have many unique
values relative to the total
number of rows.

Sponsored by Readable.com
Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

Cheatography

singleton methods, Eigenclass

In Ruby, a class is an object.
Indeed, a class is literally an
instance of the class Class The
eigenclass is an unnamed
instance of the class Class
attached to an object and which
instance methods are used as
singleton methods of the defined
object.

RubyGems

The RubyGems software allows
you to easily download, install,
and use ruby software packages
on your system.

The software package is called
a “gem” which contains a
packaged Ruby application or

library.

An Every Ruby
eigenclassis object has an

a unique, associated
anonymous eigenclass,
class which is created
associated automatically
with an the first time a
individual singleton
object in method (a
Ruby. It method defined
allows for the only for that
addition of specific object)
methods is added to it.
directly to The eigenclass
that object, stores these
without singleton
affecting methods.

other

instances of
its class.

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

build your own Ruby gem (cont) Strong params

Eigenclass (cont)

Eigenclasses can be useful in
Rails for extending or modifying
specific instances of classes
without affecting the class as a
whole: Singleton Methods: You
might use a singleton method to
add behavior directly to an
individual object, such as a
single instance of a model,
without altering its class defini-
tion. Meta-Programming:
Eigenclasses play a role in
meta-programming techniques,
allowing for dynamic modifi-
cations to objects.

class User < ApplicationRecord
end user = User.find(1) def
user.greet "Hello, #{self.name}!"
end puts user.greet # Outputs "-
Hello, [User's name]!"

build your own Ruby gem

.gemspec

lib/mygem
gem build .gemspec

Use the basic lib/gem.rb and
lib/gem/ structure for code.

Put any executables in bin, any
data files in data and tests in
test or spec.

Don't require or depend upon
files outside of the load path.
(VERSION files often seem to
live in odd places in gems.)

Do not require 'rubygems'.

Do not tamper with the SLOAD_-

PATH.

Favourites gems

rspec cancancan Active-
ModelS-
eri-
alizers
capistrano sidekiq

Strong Parameters is a feature
of Rails that prevents assigning
request parameters to objects
unless they have been explicitly
permitted. It has its own DSL
(Domain Specific Language, or
in other words, a predefined
syntax it understands), that
allows you to indicate what
parameters should be allowed. It
also lets you indicate if each
parameter should be a hash,
array or scalar (i.e. integer,
string, etc.), as well as some

annotate other functionality

Filters in controllers Controller specs

class ChangesController
< ApplicationController
aro und _action
:wrap in_tra nsa -
ction, only: :show

private

def wrap 1 n t ran -

Send http requests to applic-
ation and writing assertions
about the response.

yield, content_for

They are opposite ends of the

rendering process, with yield
specifying where content goes,
and content_for specifying what

saction the actual content is.

Act ive Rec -
ord ::B ase.tr ans -
action do

begin
yield
ensure
raise
Active Rec ord ::R -
ollback
end
end
end

end

By Abdulla Achilov
(artifactzone)

cheatography.com/artifactzone/

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 8 of 10.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

ruby-interview-seniour Cheat Sheet
by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

Cheatography

yield, content_for (cont)

The best practice is to use yield Iterate over an HMAC with a Creational Structural Behaviour Singletone Decorator Comma
in your layouts, and content_for random salt for about a 100ms Abstract Adapter Observer is is a is a
in your views. There is a special duration and save the salt with Factoryis isa a structural behavio
second use for content_for, the hash. Use functions such as a structural behavioral design design
where you give it no block and it password_hash, PBKDF2, creational design design pattern pattern
returns the previously rendered Berypt and similar functions. design pattern pattern that that lets that turr
content. This is primarily for use pattern that lets you you attach areque
in helper methods where yield that lets allows define a new into a
cannot work. Within your views, HTTPS protects the commun- you objects subscr- behaviors stand--
the best practice is to stick to ication between your browser produce with iption to objects alone
yield :my_content to recall the and server from being interc- families of incomp- mechanism by placing object tt
content, and content_for :my_co- epted and tampered with by related atible to notify these contains
ntent do...end to render the attackers. This provides confid- objects interfaces multiple objects all inforr
BN entiality, integrity and authentic- without to collab- objects I e
ation to the vast majority of specifying orate. about any spEe ettty
This is a live content block, buthas website that shows a lock iconin ~ concrete happen to objects This
not yet been populated. Please the address bar is using HTTPS classes. the object L HrElses
check back soon. they're contain ation let

In computer programming, unit

Content Security xss inj testing is a software testing tr::altz:od:
Policy method by which individual units with
https://rails-s- sql inj of source code—sets of one or different
gli.org/ more computer program request:
use ssl session modules together with delay or
hijacking associated control data, usage queue &

procedures, and operating

reset_session session request’
procedures—are tested to

i fixati executic
(expire) ration determine whether they are fit and
for use support
undoabl
operat-
ions.
By Abdulla Achilov Published 1st May, 2024. Sponsored by Readable.com
(artifactzone) Last updated 1st May, 2024. Measure your website readability!

Page 9 of 10. https://readable.com

cheatography.com/artifactzone/

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
https://cheatography.com/help/live-content/
https://rails-sqli.org/
http://www.cheatography.com/artifactzone/
https://readable.com

Cheatography

Patterns (cont)

Prototype Facade Chain
of
respon
sibility

Factory Bridge is a

Method isa structural design

creational pattern that lets

design you split a large
pattern that class or a set of
provides an closely related

interface for classes into two

creating separate hierar-
objectsina chies—abstra-
superclass, ction and

but allows implementation
subclasses —which can be
to alter the developed

type of independently of
objects that each other.

will be

created.

ruby-interview-seniour Cheat Sheet

by Abdulla Achilov (artifactzone) via cheatography.com/129081/cs/25460/

What is the primary technique

for writing a test

Test actual result of execution,
integration tests, rather than only
unit tests. Write scenario as a
complex test

An Every Ruby
eigenclassis object has an

a unique, associated
anonymous eigenclass,
class which is created
associated automatically
with an the first time a
individual singleton
object in method (a
Ruby. It method defined
allows for the only for that
addition of specific object)
methods is added to it.
directly to The eigenclass
that object, stores these
without singleton
affecting methods.

other

instances of
its class.

Eigenclass (cont)

Eigenclasses can be useful in
Rails for extending or modifying
specific instances of classes
without affecting the class as a
whole: Singleton Methods: You
might use a singleton method to
add behavior directly to an
individual object, such as a
single instance of a model,
without altering its class defini-
tion. Meta-Programming:
Eigenclasses play a role in
meta-programming techniques,
allowing for dynamic modifi-
cations to objects.

" class User < ApplicationRecord
end user = User.find(1) def
user.greet "Hello, #{self.name}!"
end puts user.greet # Outputs "-
Hello, [User's name]!"*

By Abdulla Achilov
(artifactzone)

Published 1st May, 2024.
Last updated 1st May, 2024.
Page 10 of 10.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

cheatography.com/artifactzone/

http://www.cheatography.com/
http://www.cheatography.com/artifactzone/
http://www.cheatography.com/artifactzone/cheat-sheets/ruby-interview-seniour
http://www.cheatography.com/artifactzone/
https://readable.com

	ruby-interview-seniour Cheat Sheet - Page 1
	OOP short
	Method Access Control short
	ActiveJob
	RESTful
	Rails Enige
	Method Access Control
	How should you test routes
	OOP

	ruby-interview-seniour Cheat Sheet - Page 2
	Object Relational Mapping
	Fat contro­llers
	Refactor of models
	Active Record short
	Active Record conven­tions
	Active­Record

	ruby-interview-seniour Cheat Sheet - Page 3
	E-Tags short
	SOLID short
	E-tags
	SOLID

	ruby-interview-seniour Cheat Sheet - Page 4
	Proc and lambda
	Caching 1/2
	self
	Caching 2/2
	Asset Pipeline
	Ruby method lookup path
	Ruby callbacks
	Caching short

	ruby-interview-seniour Cheat Sheet - Page 5
	Basic info
	Rack
	Associ­ations
	Migrations
	Use a constr­uctor in Ruby
	getter and setter methods in Ruby
	scopes
	Class and a module
	everything is an object in Ruby

	ruby-interview-seniour Cheat Sheet - Page 6
	Rack Middleware
	optimistic pessim­istic locking

	ruby-interview-seniour Cheat Sheet - Page 7
	postgres indexes

	ruby-interview-seniour Cheat Sheet - Page 8
	singleton methods, Eigenclass
	Strong params
	Favourites gems
	RubyGems
	Filters in contro­llers
	Controller specs
	Eigenclass
	build your own Ruby gem
	yield, conten­t_for

	ruby-interview-seniour Cheat Sheet - Page 9
	Password
	Patterns
	https (ssl)
	nested layouts
	Unit testing
	Security

	ruby-interview-seniour Cheat Sheet - Page 10
	What is the primary technique for writing a test
	Eigenclass

