
Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Introduction to PandasIntroduction to Pandas

Pandas is a powerful open-source data analysis and manipulation
library for Python.

It provides data structures and functions to efficiently work with
structured data.

Developed by Wes McKinney in 2008, Pandas is widely used in data
science, finance, and research.

Key components include Series (1-dimensional labeled array) and
DataFrame (2-dimensional labeled data structure).

Pandas simplifies data manipulation tasks such as cleaning, filtering,
grouping, and transforming.

It integrates seamlessly with other libraries like NumPy, Matplotlib,
and Scikit-learn.

Pandas is built on top of NumPy, leveraging its fast array processing
capabilities.

Offers intuitive and flexible functionalities for data exploration and
analysis.

Ideal for tasks ranging from data cleaning and preprocessing to
statistical analysis and visualization.

Indexing and Selecting DataIndexing and Selecting Data

Use .loc[] for label-based indexing on rows and columns.

Use .iloc[] for integer-based indexing on rows and columns.

Boolean indexing allows selecting data based on conditions.

df[column_name] or df.column_name selects a single column.

df[[column1, column2]] selects multiple columns.

.head(n) returns the first n rows of the DataFrame.

.tail(n) returns the last n rows of the DataFrame.

df.at[] and df.iat[] for single value selection based on label or integer.

df.iloc[:, [0, 1]] selects all rows and specific columns.

.query() method for SQL-like queries.

.isin() method for filtering based on multiple values.

Chained indexing should be avoided for assignment (use .loc[] or
.iloc[] instead).

Dealing with OutliersDealing with Outliers

Identify outliers using descriptive statistics (mean, median, standard
deviation)

Visualize data distribution using box plots, histograms, or scatter
plots

Use domain knowledge to determine if outliers are valid data points
or errors

Apply statistical methods like Z-score, IQR (Interquartile Range) to
detect outliers

Consider different strategies for handling outliers:

Removing outliers: Drop outliers from the dataset

Transforming data: Apply mathematical transformations (log, square
root) to reduce the impact of outliers

Winsorization: Cap or clamp extreme values to a specified percentile

Evaluate the impact of outlier handling on data analysis and
modeling

Document the rationale behind outlier treatment for reproducibility
and transparency

Data CleaningData Cleaning

Handling Missing Values:

dropna(): Drops rows or columns with missing values.

fillna(): Fills missing values with specified values.

isna() / notna(): Checks for missing or non-missing values.

Removing Duplicates:

duplicated(): Identifies duplicate rows.

drop_duplicates(): Removes duplicate rows.

Data Imputation:

Replace missing values with the mean, median, or mode.

Use interpolation methods for time series data.

Data Validation:

Validate data types using dtype.

Use regular expressions to validate string data.

Data Standardization:

Convert data to a consistent format (e.g., lowercase).

Normalize numeric data to a common scale.

Data Transformation:

Convert data types using astype().

Apply custom functions using apply().

Outlier Detection:

Visualize data distribution with histograms and box plots.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 1 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Data Cleaning (cont)Data Cleaning (cont)

Use statistical methods like z-score or IQR to detect outliers.

Error Correction:

Handle erroneous values based on domain knowledge.

Use external datasets or references for validation.

Handling Inconsistent Data:

Standardize categorical data.

Resolve inconsistencies in naming conventions.

Handling Data Integrity Issues:

Identify and rectify data inconsistencies.

Use data profiling tools for anomaly detection.

Error Handling:

Use try-except blocks to handle errors during data processing.

Log errors for debugging and tracking purposes.

Grouping and Aggregating DataGrouping and Aggregating Data

Grouping Data:

Grouping data based on one or more columns using the groupby()
function.

Example: df.groupby('Column') or df.groupby(['Column1', 'Column2']).

Aggregating Data:

Applying aggregate functions like sum, mean, count, etc., to grouped
data.

Example: df.groupby('Column').sum() or df.groupby('Column').agg({'‐
Column2': 'mean', 'Column3': 'sum'}).

Common Aggregate Functions:

sum(): Calculates the sum of numeric values.

mean(): Calculates the mean of numeric values.

count(): Counts non-null values.

min(), max(): Finds the minimum or maximum value.

agg(): Allows specifying multiple aggregate functions for different
columns.

Custom Aggregation:

Defining custom aggregation functions using agg() or apply().

Example: df.groupby('Column').agg(custom_function).

Grouping with Multiple Functions:

Applying multiple aggregate functions simultaneously.

Example: df.groupby('Column').agg(['mean', 'sum']).

Named Aggregation:

Providing custom names for aggregated columns.

Grouping and Aggregating Data (cont)Grouping and Aggregating Data (cont)

Example: df.groupby('Column').agg(avg_salary=('Salary', 'mean'),
total_sales=('Sales', 'sum')).

Grouping by Time Periods:

Grouping time series data by specific time periods like months or
years.

Example: df.groupby(pd.Grouper(freq='M')).

Grouping with Categorical Data:

Grouping based on categorical data types.

Example: df.groupby('Category').sum().

Handling Grouped Data:

Accessing grouped data using get_group() method.

Example: grouped.get_group('Group_Name').

Working with Excel FilesWorking with Excel Files

Reading Excel Files:

pd.read_excel() function to read Excel files into DataFrame.

Specify sheet name, header, index, and column names.

Writing Excel Files:

DataFrame.to_excel() method to write DataFrame to an Excel file.

Specify sheet name, index, and column names.

Working with Multiple Sheets:

pd.ExcelFile() to work with multiple sheets in a single Excel file.

Read specific sheets using parse() or read_excel().

Handling Excel Formatting:

Preserve formatting while reading with pd.ExcelFile() and xlrd
engine.

Formatting may be lost when writing to Excel.

Excel Data Manipulation:

Apply pandas operations (filtering, sorting, grouping) to Excel data
after reading.

Convert Excel data into pandas DataFrame for manipulation and
analysis.

Exporting DataFrame to Specific Excel Formats:

Specify Excel file format (xls, xlsx) while writing.

Use appropriate file extension (.xls or .xlsx) for compatibility.

Handling Large Excel Files:

Utilize chunksize parameter when reading large Excel files to load
data in manageable chunks.

Process data incrementally to avoid memory overflow.

Excel File Metadata:

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 2 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Working with Excel Files (cont)Working with Excel Files (cont)

Retrieve Excel file information (sheet names, data types, etc.) using
pandas metadata functions.

Access metadata through pd.ExcelFile() object or DataFrame attrib‐
utes.

Excel File Validation:

Validate Excel data integrity using pandas functions (e.g., checking
for missing values, data types).

Ensure consistency between Excel data and expected data types for
analysis.

Excel File Performance Optimization:

Optimize Excel file reading and writing performance by specifying
appropriate options (e.g., engine, dtype).

Utilize parallel processing or asynchronous methods for faster data
processing.

Reshaping DataReshaping Data

Pivot Tables Restructuring data using one or more
columns as new columns.

Melting Unpivoting data from wide to long format.

Stacking and
Unstacking

Manipulating hierarchical indices.

Reshaping with Hierar‐
chical Indexing

Restructuring data with MultiIndex.

Transposing Data Swapping rows and columns.

Merging and Joining
DataFrames

Combining data horizontally based on
common columns or indices.

Appending
DataFrames

Concatenating data vertically.

Input/OutputInput/Output

pd.read_csv() Read CSV files into DataFrame.

pd.read_e‐
xcel()

Read Excel files into DataFrame.

pd.read_sql() Read SQL query or database table into
DataFrame.

pd.read_json() Read JSON files into DataFrame.

pd.read_html() Read HTML tables into DataFrame.

Input/Output (cont)Input/Output (cont)

pd.read_pickle() Read pickled (serialized) objects into
DataFrame.

DataFrame.to‐
_csv()

Write DataFrame to a CSV file.

DataFrame.to_ex‐
cel()

Write DataFrame to an Excel file.

DataFrame.to_sql() Write DataFrame to a SQL database.

DataFrame.to‐
_json()

Write DataFrame to a JSON file.

DataFrame.to‐
_html()

Write DataFrame to an HTML file.

DataFrame.to_pi‐
ckle()

Write DataFrame to a pickled (serialized)
object file.

Performance OptimizationPerformance Optimization

Use
Vectorized
Operations

Avoid looping through DataFrame rows; instead,
utilize Pandas' built-in vectorized operations for
faster computations.

Optimize
Memory
Usage

Convert data types to more memory-efficient ones
(e.g., using int8 instead of int64 for smaller integers).

Leverage
Caching

Utilize caching mechanisms like df.eval() and
df.query() for repetitive computations on large
datasets to improve performance.

Use DataFr‐
ame.apply()
with caution

It can be slow; explore alternatives like DataFr‐
ame.transform() or vectorized operations whenever
possible.

Pandas
Built-in
Methods

Utilize built-in Pandas methods that are optimized for
performance (e.g., df.groupby().agg() instead of
custom aggregation functions).

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 3 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Performance Optimization (cont)Performance Optimization (cont)

Chunking When working with large datasets, process data in
smaller, manageable chunks to avoid memory errors
and improve performance.

Paralleli‐
zation

Use libraries like Dask or Modin to parallelize Pandas
operations across multiple cores for faster execution.

Profile and
Benchmark

Identify bottlenecks in your code using tools like
pandas_profiling or Python's built-in cProfile module,
and optimize accordingly.

Avoid
Method
Chaining

While method chaining can make code concise, it can
also hinder performance; consider breaking chains
into separate statements for better performance.

Pandas
Built-in I/O

Use Pandas' optimized file I/O methods (e.g., pd.rea‐
d_csv() with appropriate parameters) to efficiently read
and write data from various sources.

Advanced IndexingAdvanced Indexing

MultiIndexing

Creating hierarchical indexes with multiple levels.

Accessing and manipulating data with MultiIndexes.

Hierarchical Indexing:

Understanding hierarchical indexes.

Using hierarchical indexes for advanced data organization and
analysis.

Indexing with Boolean Masks:

Using boolean arrays to filter data.

Applying boolean masks for advanced data selection.

Indexing with .loc and .iloc:

Utilizing .loc for label-based indexing.

Advanced Indexing (cont)Advanced Indexing (cont)

Utilizing .iloc for integer-based indexing.

Setting and Resetting Index:

Setting new indexes for DataFrames.

Resetting indexes to default integer index.

Indexing Performance Optimization:

Techniques for optimizing indexing performance.

Avoiding common pitfalls for efficient indexing.

Tips and Tricks for Efficient Pandas UsageTips and Tricks for Efficient Pandas Usage

Use Vectorized
Operations

Utilize built-in functions and operations for faster
computation

Avoid Iteration
over Rows

Use apply() with vectorized functions instead of
looping through rows.

Use Method
Chaining

Combine multiple operations in a single
statement for cleaner code.

Optimize
Memory Usage

Convert data types to appropriate ones (int64 to
int32, etc.) to reduce memory usage.

Utilize Pandas
Built-in
Functions:

Explore and leverage the extensive set of built-in
functions for common tasks.

Explore Pandas
Documentation

Refer to the official documentation for detailed
explanations and examples.

Profile Code Use profiling tools like cProfile to identify bottle‐
necks and optimize performance.

Leverage
Cython and
Numba

For computationally intensive tasks, consider
using Cython or Numba to speed up operations.

Parallelize
Operations

Utilize parallel processing with libraries like Dask
or Modin for large datasets.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 4 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Tips and Tricks for Efficient Pandas Usage (cont)Tips and Tricks for Efficient Pandas Usage (cont)

Keep Code
Readable

Prioritize readability and maintainability while
optimizing performance.

Working with JSON and XML DataWorking with JSON and XML Data

Reading JSON Data:

pd.read_json() to read JSON files into a DataFrame.

Specify orient parameter for different JSON structures ('records',
'split', 'index', 'columns').

Writing JSON Data:

to_json() method to convert DataFrame to JSON format.

Specify orient parameter for desired JSON structure.

Reading XML Data:

Use xml.etree.ElementTree or lxml library to parse XML data.

Convert XML structure to DataFrame manually.

Writing XML Data:

No direct method in Pandas for writing XML.

Convert DataFrame to XML using libraries like xml.etree.Eleme‐
ntTree or lxml.

Handling Nested JSON/XML:

Use normalization techniques like pd.json_normalize() to handle
nested JSON structures.

For XML, flatten the hierarchical structure manually or use approp‐
riate libraries.

Working with APIs:

Retrieve JSON data from APIs using libraries like requests.

Convert JSON responses to DataFrame for analysis.

Performance Considerations:

JSON and XML parsing can be slower compared to other formats
like CSV.

Optimize parsing methods for large datasets to improve perfor‐
mance.

Working with Text DataWorking with Text Data

Pandas provides powerful tools for working with text data within
Series and DataFrame objects.

str accessor allows accessing string methods for Series containing
strings.

Common string methods include lower(), upper(), strip(), split(),
replace(), etc.

Working with Text Data (cont)Working with Text Data (cont)

contains() method checks if a pattern or substring exists in each
element of a Series.

extract() method extracts substrings using regular expressions.

split() method splits strings into lists of substrings based on a
delimiter.

join() method joins lists of strings into a single string with a specified
delimiter.

get_dummies() method creates dummy variables for categorical text
data.

replace() method replaces values based on a mapping or regular
expression.

find() method finds the first occurrence of a substring in each
element of a Series.

count() method counts occurrences of a substring in each element of
a Series.

startswith() and endswith() methods check if each element in a
Series starts or ends with a specified substring.

Handling Categorical DataHandling Categorical Data

Convert categorical data to numerical representation using pd.factor‐
ize() or pd.get_dummies()

Utilize astype() method to convert categorical data to categorical
dtype

Handle ordinal data using Categorical dtype with specified order

Use pd.cut() for binning numerical data into discrete intervals

Employ pd.qcut() for quantile-based discretization

Encode categorical variables using LabelEncoder or OneHotEncoder
from sklearn.preprocessing

Handle high cardinality categorical data using techniques like
frequency encoding or target encoding

Use pd.Categorical() to create categorical data with custom
categories and ordering

Visualization with PandasVisualization with Pandas

Plotting
Functions:

Pandas provides easy-to-use plotting functions that
leverage Matplotlib under the hood. Use .plot() method
on Series or DataFrame to create various types of plots
like line, bar, histogram, scatter, etc.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 5 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Visualization with Pandas (cont)Visualization with Pandas (cont)

Custom‐
ization:

You can customize plots by passing parameters to the
plotting functions such as title, labels, colors, styles, etc.
Additionally, you can directly use Matplotlib functions to
fine-tune your plots further.

Subplots: Pandas supports creating subplots from DataFrame or
Series. Simply call .plot() on different columns or
subsets of data to create multiple plots in the same
figure.

Intera‐
ctive
Plots:

Pandas supports integration with libraries like Plotly and
Bokeh for creating interactive plots. Simply install these
libraries and Pandas will use them to generate intera‐
ctive visualizations.

Time
Series
Plotting:

Pandas makes it easy to plot time series data with intell‐
igent date formatting and labeling. Use .plot() with time-i‐
ndexed data to create informative time series plots.

Seaborn
Integr‐
ation:

Seaborn, a statistical data visualization library,
integrates seamlessly with Pandas. You can use
Seaborn functions directly on Pandas objects to create
more complex and visually appealing plots.

Time Series DataTime Series Data

Introduction:

Time series data is sequential data indexed by timestamps.

Pandas provides robust tools for working with time series data effici‐
ently.

Date-Time Index:

Pandas offers specialized data structures like DatetimeIndex to
handle time series indexing.

Convert date strings to DatetimeIndex using pd.to_datetime().

Resampling and Frequency Conversion:

Time Series Data (cont)Time Series Data (cont)

Adjust time series data to different frequencies using resample().

Aggregating or downsampling time series data to a lower frequency
or upsampling to a higher frequency.

Time Shifting:

Shift index by a specified number of periods with shift().

Useful for calculating differences over time or shifting data for
alignment.

Rolling and Expanding Windows:

Compute rolling statistics (mean, sum, etc.) over a specified window
with rolling().

Calculate expanding statistics over the entire history of a time series
with expanding().

Time Zone Handling:

Localize timestamps to a specific time zone using tz_localize().

Convert timestamps between time zones with tz_convert().

Offset Aliases:

Use offset aliases like 'D' for day, 'M' for month, 'Y' for year to
perform frequency conversions easily.

Time Series Plotting:

Pandas provides convenient methods for plotting time series data
directly from DataFrames.

Use plot() function with a datetime index for quick visualization.

Date Range Generation:

Generate date ranges using date_range() for easy creation of time
series indices.

Specify start date, end date, frequency, and time zone parameters.

Time Series Analysis:

Perform time series analysis including trend analysis, seasonality
detection, and forecasting using Pandas in conjunction with other
libraries like Statsmodels.

Merging and Joining DataFramesMerging and Joining DataFrames

Concat
enation

Combining DataFrames along rows or columns.

Merge Combining DataFrames based on common columns using
SQL-like joins such as inner, outer, left, and right joins.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 6 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Merging and Joining DataFrames (cont)Merging and Joining DataFrames (cont)

Join Convenient method for merging DataFrames based
on index labels.

Handling
Duplicate
Columns

Dealing with duplicate column names when
merging DataFrames.

Suffixes Specifying suffixes for overlapping column names
in the merged DataFrame.

Merging on
Index

Merging DataFrames based on their index values.

Joining on
Index

Joining DataFrames based on their index labels.

Concat‐
enating
DataFrames

Combining multiple DataFrames along rows or
columns using the pd.concat() function.

Merging with
Different Join
Types

Utilizing different types of joins (inner, outer, left,
right) to merge DataFrames using the pd.merge()
function.

Joining on
Index

Merging DataFrames based on their index labels
using the .join() method.

Handling
Overlapping
Column
Names

Managing duplicate or overlapping column names
during merging.

Merging on
Multiple
Columns

Performing merges based on multiple columns in
the DataFrames.

Suffixes Specifying suffixes for overlapping column names
to distinguish them in the merged DataFrame.

Merging on
Index

Merging DataFrames based on their index values
using the .merge() method with the 'left_index' and
'right_index' parameters.

Merging and Joining DataFrames (cont)Merging and Joining DataFrames (cont)

Joining on Index Joining DataFrames based on their index
labels using the .join() method.

Handling Overlapping
Column Names

Managing duplicate or overlapping column
names during merging.

Merging on Multiple
Columns

Performing merges based on multiple
columns in the DataFrames.

Data TransformationData Transformation

Applying
Functions

Use .apply() to apply a function along an axis of the
DataFrame or Series.

Mapping Transform values in a Series or DataFrame using a
mapping or a function.

Replacing
Values

Replace specific values in a DataFrame or Series
with other values.

Dropping
Columns or
Rows

Use .drop() to remove specified rows or columns
from a DataFrame.

Adding/Re‐
moving
Columns

Add or remove columns from a DataFrame using
assignment or the .drop() method.

Renaming
Columns

Rename columns in a DataFrame using the
.rename() method.

Duplicating
Data

Create copies of data using the .copy() method.

Changing
Data Types

Convert data types of columns using the .astype()
method.

Discretiz‐
ation and
Binning

Convert continuous data into discrete intervals using
the .cut() function.

Encoding
Categorical
Variables

Convert categorical variables into numerical repres‐
entations using techniques like one-hot encoding or
label encoding.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 7 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Data Transformation (cont)Data Transformation (cont)

Normalization
and Standardi‐
zation

Scale numeric data to a standard range or distri‐
bution.

Merging/Conc‐
atenating
DataFrames

Combine multiple DataFrames either by concat‐
enating or merging based on common columns or
indices.

Basic OperationsBasic Operations

Slicing Selecting subsets of data using row and column labels
or positions.

Filtering Applying conditions to extract specific rows or columns
from a DataFrame.

Sorting Arranging data in ascending or descending order
based on one or more columns.

Applying
Functions

Applying functions element-wise to data, either built-in
or custom functions.

Descriptive
Statistics

Calculating basic statistical measures like mean,
median, mode, etc., for data exploration.

Data
Alignment

Automatically aligning data based on row and column
labels when performing operations between different
DataFrames or Series.

Element-
wise
Operations

Performing operations like addition, subtraction,
multiplication, and division on individual elements of a
DataFrame or Series.

Aggreg‐
ating Data

Computing summary statistics like sum, mean, count,
etc., over specified axes of the data.

Filling
Missing
Values

Handling missing or NaN values by filling them with a
specified value or using methods like forward-fill or
backward-fill.

Basic Operations (cont)Basic Operations (cont)

Applying Condit‐
ional Logic

Using conditions to assign values or modify data
based on certain criteria.

Data StructuresData Structures

Series One-dimensional labeled array that can hold any
data type.

DataFrame Two-dimensional labeled data structure with
columns of potentially different types, akin to a
spreadsheet or SQL table.

Indexing and
Selecting
Data

Techniques for accessing specific elements, rows,
or columns within Series or DataFrame.

Basic
Operations

Fundamental operations such as slicing, filtering,
and sorting data for effective manipulation.

Data
Cleaning

Strategies for handling missing values, duplicates,
and other inconsistencies within the data.

Data Transf‐
ormation

Methods for applying functions, mapping values,
and transforming data for analysis.

Grouping and
Aggregating
Data

Techniques for grouping data based on specified
criteria and performing aggregations like sum,
mean, count, etc.

Merging and
Joining
DataFrames

Methods for combining multiple DataFrames based
on common columns or indices.

Reshaping
Data

Tools for reshaping data using pivot tables, melting,
and other techniques to suit analytical needs.

Time Series
Data

Handling and analyzing time-based data using
pandas' specialized functionalities.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 8 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://readable.com

	Pandas Cheat Sheet - Page 1
	Introduction to Pandas
	Dealing with Outliers
	Data Cleaning
	Indexing and Selecting Data

	Pandas Cheat Sheet - Page 2
	Working with Excel Files
	Grouping and Aggregating Data

	Pandas Cheat Sheet - Page 3
	Performance Optimization
	Reshaping Data
	Input/Output

	Pandas Cheat Sheet - Page 4
	Tips and Tricks for Efficient Pandas Usage
	Advanced Indexing

	Pandas Cheat Sheet - Page 5
	Working with JSON and XML Data
	Handling Categorical Data
	Visualization with Pandas
	Working with Text Data

	Pandas Cheat Sheet - Page 6
	Time Series Data
	Merging and Joining DataFrames

	Pandas Cheat Sheet - Page 7
	Data Transformation

	Pandas Cheat Sheet - Page 8
	Data Structures
	Basic Operations

