Pandas Cheat Sheet
Cheatography T

Introduction to Pandas

Pandas is a powerful open-source data analysis and manipulation
library for Python.

It provides data structures and functions to efficiently work with
structured data.

Developed by Wes McKinney in 2008, Pandas is widely used in data
science, finance, and research.

Key components include Series (1-dimensional labeled array) and
DataFrame (2-dimensional labeled data structure).

Pandas simplifies data manipulation tasks such as cleaning, filtering,
grouping, and transforming.

It integrates seamlessly with other libraries like NumPy, Matplotlib,
and Scikit-learn.

Pandas is built on top of NumPy, leveraging its fast array processing
capabilities.
Offers intuitive and flexible functionalities for data exploration and

analysis.

Ideal for tasks ranging from data cleaning and preprocessing to
statistical analysis and visualization.

Indexing and Selecting Data

Use .loc]] for label-based indexing on rows and columns.

Use .iloc[] for integer-based indexing on rows and columns.
Boolean indexing allows selecting data based on conditions.
df[column_name] or df.column_name selects a single column.
dff[column1, column2]] selects multiple columns.

.head(n) returns the first n rows of the DataFrame.

.tail(n) returns the last n rows of the DataFrame.

df.at[] and df.iat[] for single value selection based on label or integer.
df.iloc[:, [0, 1]] selects all rows and specific columns.

.query() method for SQL-like queries.

.isin() method for filtering based on multiple values.

Chained indexing should be avoided for assignment (use .loc[] or
.ilocf] instead).

by Arshdeep via cheatography.com/201979/cs/42963/

Dealing with Outliers

Identify outliers using descriptive statistics (mean, median, standard
deviation)

Visualize data distribution using box plots, histograms, or scatter
plots

Use domain knowledge to determine if outliers are valid data points
or errors

Apply statistical methods like Z-score, IQR (Interquartile Range) to
detect outliers

Consider different strategies for handling outliers:
Removing outliers: Drop outliers from the dataset

Transforming data: Apply mathematical transformations (log, square
root) to reduce the impact of outliers

Winsorization: Cap or clamp extreme values to a specified percentile

Evaluate the impact of outlier handling on data analysis and
modeling

Document the rationale behind outlier treatment for reproducibility
and transparency

Data Cleaning

Handling Missing Values:

dropna(): Drops rows or columns with missing values.
fillna(): Fills missing values with specified values.
isna() / notna(): Checks for missing or non-missing values.
Removing Duplicates:

duplicated(): Identifies duplicate rows.
drop_duplicates(): Removes duplicate rows.

Data Imputation:

Replace missing values with the mean, median, or mode.
Use interpolation methods for time series data.

Data Validation:

Validate data types using dtype.

Use regular expressions to validate string data.

Data Standardization:

Convert data to a consistent format (e.g., lowercase).
Normalize numeric data to a common scale.

Data Transformation:

Convert data types using astype().

Apply custom functions using apply().

Outlier Detection:

Visualize data distribution with histograms and box plots.

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas

By Arshdeep Not published yet. Sponsored by ApolloPad.com
cheatography.com/arshdeep/ Last updated 6th April, 2024. Everyone has a novel in them. Finish
Page 1 of 8. Yours!
https://apollopad.com

http://www.cheatography.com/arshdeep/
https://apollopad.com

Pandas Cheat Sheet
Cheatography T

Data Cleaning (cont)

Use statistical methods like z-score or IQR to detect outliers.
Error Correction:

Handle erroneous values based on domain knowledge.

Use external datasets or references for validation.

Handling Inconsistent Data:

Standardize categorical data.

Resolve inconsistencies in naming conventions.

Handling Data Integrity Issues:

Identify and rectify data inconsistencies.

Use data profiling tools for anomaly detection.

Error Handling:

Use try-except blocks to handle errors during data processing.

Log errors for debugging and tracking purposes.

Grouping and Aggregating Data
Grouping Data:

Grouping data based on one or more columns using the groupby()
function.

Example: df.groupby(‘Column’) or df.groupby(['Column1’, '‘Column2).
Aggregating Data:

Applying aggregate functions like sum, mean, count, etc., to grouped
data.

Example: df.groupby(‘Column').sum() or df.groupby('Column').agg({'-
Column2": 'mean’, 'Column3'": 'sum'}).

Common Aggregate Functions:

sum(): Calculates the sum of numeric values.
mean(): Calculates the mean of numeric values.
count(): Counts non-null values.

min(), max(): Finds the minimum or maximum value.

agg(): Allows specifying multiple aggregate functions for different
columns.

Custom Aggregation:

Defining custom aggregation functions using agg() or apply().
Example: df.groupby('Column’).agg(custom_function).
Grouping with Multiple Functions:

Applying multiple aggregate functions simultaneously.
Example: df.groupby('‘Column’).agg(['mean’, 'sum')).

Named Aggregation:

Providing custom names for aggregated columns.

by Arshdeep via cheatography.com/201979/cs/42963/

Grouping and Aggregating Data (cont)

Example: df.groupby('‘Column’).agg(avg_salary=('Salary', 'mean’),
total_sales=('Sales', 'sum')).

Grouping by Time Periods:

Grouping time series data by specific time periods like months or
years.

Example: df.groupby(pd.Grouper(freq="M')).
Grouping with Categorical Data:

Grouping based on categorical data types.
Example: df.groupby('Category").sum().

Handling Grouped Data:

Accessing grouped data using get_group() method.

Example: grouped.get_group('Group_Name').

Working with Excel Files

Reading Excel Files:

pd.read_excel() function to read Excel files into DataFrame.
Specify sheet name, header, index, and column names.
Writing Excel Files:

DataFrame.to_excel() method to write DataFrame to an Excel file.
Specify sheet name, index, and column names.

Working with Multiple Sheets:

pd.ExcelFile() to work with multiple sheets in a single Excel file.
Read specific sheets using parse() or read_excel().

Handling Excel Formatting:

Preserve formatting while reading with pd.ExcelFile() and xIrd
engine.

Formatting may be lost when writing to Excel.
Excel Data Manipulation:

Apply pandas operations (filtering, sorting, grouping) to Excel data
after reading.

Convert Excel data into pandas DataFrame for manipulation and
analysis.

Exporting DataFrame to Specific Excel Formats:

Specify Excel file format (xls, xIsx) while writing.

Use appropriate file extension (.xls or .xlsx) for compatibility.
Handling Large Excel Files:

Utilize chunksize parameter when reading large Excel files to load
data in manageable chunks.

Process data incrementally to avoid memory overflow.

Excel File Metadata:

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas

By Arshdeep Not published yet. Sponsored by ApolloPad.com
cheatography.com/arshdeep/ Last updated 6th April, 2024. Everyone has a novel in them. Finish
Page 2 of 8. Yours!
https://apollopad.com

http://www.cheatography.com/arshdeep/
https://apollopad.com

Cheatography

Working with Excel Files (cont)

Retrieve Excel file information (sheet names, data types, etc.) using
pandas metadata functions.

Access metadata through pd.ExcelFile() object or DataFrame attrib-
utes.

Excel File Validation:

Validate Excel data integrity using pandas functions (e.g., checking
for missing values, data types).

Ensure consistency between Excel data and expected data types for
analysis.

Excel File Performance Optimization:

Optimize Excel file reading and writing performance by specifying
appropriate options (e.g., engine, dtype).

Utilize parallel processing or asynchronous methods for faster data
processing.

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Input/Output (cont)

pd.read_pickle() Read pickled (serialized) objects into

DataFrame.

DataFrame.to- Write DataFrame to a CSV file.

_csv()

DataFrame.to_ex- Write DataFrame to an Excel file.

cel()

DataFrame.to_sql() Write DataFrame to a SQL database.

DataFrame.to- Write DataFrame to a JSON file.
_json()
DataFrame.to-

_html()

Write DataFrame to an HTML file.

DataFrame.to_pi- Write DataFrame to a pickled (serialized)

ckle() object file.

Reshaping Data

Pivot Tables Restructuring data using one or more
columns as new columns.
Melting Unpivoting data from wide to long format.

Stacking and Manipulating hierarchical indices.

Unstacking

Reshaping with Hierar- Restructuring data with Multilndex.

chical Indexing
Transposing Data Swapping rows and columns.

Merging and Joining Combining data horizontally based on

DataFrames common columns or indices.
Appending Concatenating data vertically.
DataFrames

Input/Output

pd.read_csv() Read CSYV files into DataFrame.

pd.read_e- Read Excel files into DataFrame.

xcel()

pd.read_sql() Read SQL query or database table into

DataFrame.
pd.read_json() Read JSON files into DataFrame.

pd.read_html() Read HTML tables into DataFrame.

Performance Optimization

Use Avoid looping through DataFrame rows; instead,

Vectorized utilize Pandas' built-in vectorized operations for

Operations faster computations.

Optimize Convert data types to more memory-efficient ones

Memory (e.g., using int8 instead of int64 for smaller integers).

Usage

Leverage Utilize caching mechanisms like df.eval() and

Caching df.query() for repetitive computations on large
datasets to improve performance.

Use DataFr- It can be slow; explore alternatives like DataFr-

ame.apply() ame.transform() or vectorized operations whenever

with caution possible.

Pandas Utilize built-in Pandas methods that are optimized for

Built-in performance (e.g., df.groupby().agg() instead of

Methods custom aggregation functions).

By Arshdeep
cheatography.com/arshdeep/

Not published yet.

Page 3 of 8.

Last updated 6th April, 2024.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://apollopad.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Cheatography

Performance Optimization (cont)

Advanced Indexing (cont)

Creating hierarchical indexes with multiple levels.

Accessing and manipulating data with Multiindexes.

Hierarchical Indexing:

Understanding hierarchical indexes.

Using hierarchical indexes for advanced data organization and

analysis.

Indexing with Boolean Masks:

Using boolean arrays to filter data.

Applying boolean masks for advanced data selection.

Indexing with

Jloc and .iloc:

Utilizing .loc for label-based indexing.

By Arshdeep
cheatography.com/arshdeep/

Page 4 of 8.

Not published yet.
Last updated 6th April, 2024.

Memory Usage
Utilize Pandas
Built-in
Functions:

Explore Pandas
Documentation

Profile Code

Leverage
Cython and
Numba

Parallelize
Operations

Chunking When working with large datasets, process data in Utilizing .iloc for integer-based indexing.

smaller, manageable chunks to avoid memory errors Setting and Resetting Index:

di rfi .

andimprove periormance Setting new indexes for DataFrames.

Paralleli- Use libraries like Dask or Modin to parallelize Pandas . .)
) i)) Resetting indexes to default integer index.
zation operations across multiple cores for faster execution.
Indexing Performance Optimization:

Profile and Identify bottlenecks in your code using tools like
Benchmark pandas_profiling or Python's built-in cProfile module, Techniques for optimizing indexing performance.

and optimize accordingly. Avoiding common pitfalls for efficient indexing.
Avoid While method chaining can make code concise, it can
Method also hinder performance; consider breaking chains Mz Tons i Silne Frnees Uk
Chaining into separate statements for better performance. Use Vectorized Utilize built-in functions and operations for faster
Pandas Use Pandas' optimized file I/O methods (e.g., pd.rea- Operations computation
Built-in I/O d_csv() with appropriate parameters) to efficiently read Avoid Iteration Use apply() with vectorized functions instead of

and write data from various sources. over Rows looping through rows.

Use Method Combine multiple operations in a single

Advanced Indexing Chaining statement for cleaner code.
Multilndexing Optimize Convert data types to appropriate ones (int64 to

int32, etc.) to reduce memory usage.

Explore and leverage the extensive set of built-in
functions for common tasks.

Refer to the official documentation for detailed

explanations and examples.

Use profiling tools like cProfile to identify bottle-
necks and optimize performance.

For computationally intensive tasks, consider
using Cython or Numba to speed up operations.

Utilize parallel processing with libraries like Dask
or Modin for large datasets.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://apollopad.com

Pandas Cheat Sheet
Cheatography T

Tips and Tricks for Efficient Pandas Usage (cont)

Keep Code
Readable

Prioritize readability and maintainability while
optimizing performance.

Working with JSON and XML Data

Reading JSON Data:

pd.read_json() to read JSON files into a DataFrame.

Specify orient parameter for different JSON structures ('records’,
'split', 'index’, 'columns').

Writing JSON Data:

to_json() method to convert DataFrame to JSON format.
Specify orient parameter for desired JSON structure.
Reading XML Data:

Use xml.etree.ElementTree or Ixml library to parse XML data.
Convert XML structure to DataFrame manually.

Writing XML Data:

No direct method in Pandas for writing XML.

Convert DataFrame to XML using libraries like xml.etree.Eleme-
ntTree or Ixml.

Handling Nested JSON/XML:

Use normalization techniques like pd.json_normalize() to handle
nested JSON structures.

For XML, flatten the hierarchical structure manually or use approp-
riate libraries.

Working with APIs:

Retrieve JSON data from APIs using libraries like requests.
Convert JSON responses to DataFrame for analysis.
Performance Considerations:

JSON and XML parsing can be slower compared to other formats
like CSV.

Optimize parsing methods for large datasets to improve perfor-

mance.

by Arshdeep via cheatography.com/201979/cs/42963/

Working with Text Data (cont)

contains() method checks if a pattern or substring exists in each
element of a Series.

extract() method extracts substrings using regular expressions.

split() method splits strings into lists of substrings based on a
delimiter.

join() method joins lists of strings into a single string with a specified
delimiter.

get_dummies() method creates dummy variables for categorical text
data.

replace() method replaces values based on a mapping or regular
expression.
find() method finds the first occurrence of a substring in each

element of a Series.

count() method counts occurrences of a substring in each element of
a Series.

startswith() and endswith() methods check if each element in a
Series starts or ends with a specified substring.

Handling Categorical Data

Convert categorical data to numerical representation using pd.factor-
ize() or pd.get_dummies()

Utilize astype() method to convert categorical data to categorical
dtype

Handle ordinal data using Categorical dtype with specified order

Use pd.cut() for binning numerical data into discrete intervals

Employ pd.qcut() for quantile-based discretization

Encode categorical variables using LabelEncoder or OneHotEncoder
from sklearn.preprocessing

Handle high cardinality categorical data using techniques like
frequency encoding or target encoding

Use pd.Categorical() to create categorical data with custom
categories and ordering

Working with Text Data

Pandas provides powerful tools for working with text data within
Series and DataFrame objects.

str accessor allows accessing string methods for Series containing
strings.

Common string methods include lower(), upper(), strip(), split(),
replace(), etc.

By Arshdeep
cheatography.com/arshdeep/

Not published yet.

Page 5 of 8.

Last updated 6th April, 2024.

Visualization with Pandas

Plotting Pandas provides easy-to-use plotting functions that

Functions: leverage Matplotlib under the hood. Use .plot() method
on Series or DataFrame to create various types of plots

like line, bar, histogram, scatter, etc.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://apollopad.com

Pandas Cheat Sheet
Cheatography T

Visualization with Pandas (cont)

Custom- You can customize plots by passing parameters to the

ization: plotting functions such as title, labels, colors, styles, etc.
Additionally, you can directly use Matplotlib functions to
fine-tune your plots further.

Subplots: Pandas supports creating subplots from DataFrame or
Series. Simply call .plot() on different columns or
subsets of data to create multiple plots in the same
figure.

Intera- Pandas supports integration with libraries like Plotly and

ctive Bokeh for creating interactive plots. Simply install these

Plots: libraries and Pandas will use them to generate intera-
ctive visualizations.

Time Pandas makes it easy to plot time series data with intell-

Series igent date formatting and labeling. Use .plot() with time-i-

Plotting: ndexed data to create informative time series plots.

Seaborn Seaborn, a statistical data visualization library,

Integr- integrates seamlessly with Pandas. You can use

ation: Seaborn functions directly on Pandas objects to create

more complex and visually appealing plots.

Time Series Data

Introduction:
Time series data is sequential data indexed by timestamps.

Pandas provides robust tools for working with time series data effici-
ently.

Date-Time Index:

Pandas offers specialized data structures like Datetimelndex to
handle time series indexing.

Convert date strings to Datetimelndex using pd.to_datetime().

Resampling and Frequency Conversion:

By Arshdeep

cheatography.com/arshdeep/

Not published yet.

Page 6 of 8.

Last updated 6th April, 2024.

by Arshdeep via cheatography.com/201979/cs/42963/

Time Series Data (cont)

Adjust time series data to different frequencies using resample().

Aggregating or downsampling time series data to a lower frequency
or upsampling to a higher frequency.

Time Shifting:
Shift index by a specified number of periods with shift().

Useful for calculating differences over time or shifting data for
alignment.

Rolling and Expanding Windows:

Compute rolling statistics (mean, sum, etc.) over a specified window
with rolling().

Calculate expanding statistics over the entire history of a time series
with expanding().

Time Zone Handling:

Localize timestamps to a specific time zone using tz_localize().
Convert timestamps between time zones with tz_convert().
Offset Aliases:

Use offset aliases like 'D' for day, 'M' for month, 'Y" for year to
perform frequency conversions easily.

Time Series Plotting:

Pandas provides convenient methods for plotting time series data
directly from DataFrames.

Use plot() function with a datetime index for quick visualization.
Date Range Generation:

Generate date ranges using date_range() for easy creation of time
series indices.

Specify start date, end date, frequency, and time zone parameters.
Time Series Analysis:

Perform time series analysis including trend analysis, seasonality
detection, and forecasting using Pandas in conjunction with other
libraries like Statsmodels.

Merging and Joining DataFrames

Concat Combining DataFrames along rows or columns.
enation
Merge Combining DataFrames based on common columns using

SQL-like joins such as inner, outer, left, and right joins.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://apollopad.com

Cheatography

Merging and Joining DataFrames (cont)

Join

Handling
Duplicate
Columns

Suffixes

Merging on
Index
Joining on
Index
Concat-
enating
DataFrames
Merging with
Different Join
Types
Joining on
Index
Handling
Overlapping
Column
Names
Merging on
Multiple
Columns

Suffixes

Merging on
Index

Convenient method for merging DataFrames based
on index labels.

Dealing with duplicate column names when
merging DataFrames.

Specifying suffixes for overlapping column names
in the merged DataFrame.

Merging DataFrames based on their index values.

Joining DataFrames based on their index labels.

Combining multiple DataFrames along rows or
columns using the pd.concat() function.

Utilizing different types of joins (inner, outer, left,
right) to merge DataFrames using the pd.merge()
function.

Merging DataFrames based on their index labels
using the .join() method.

Managing duplicate or overlapping column names
during merging.

Performing merges based on multiple columns in
the DataFrames.

Specifying suffixes for overlapping column names
to distinguish them in the merged DataFrame.

Merging DataFrames based on their index values
using the .merge() method with the 'left_index' and
'right_index' parameters.

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Merging and Joining DataFrames (cont)

Joining on Index

Handling Overlapping

Column Names

Merging on Multiple

Columns

Joining DataFrames based on their index
labels using the .join() method.

Managing duplicate or overlapping column
names during merging.

Performing merges based on multiple
columns in the DataFrames.

By Arshdeep
cheatography.com/arshdeep/

Not published yet.

Page 7 of 8.

Data Transformation

Applying
Functions

Mapping

Replacing
Values
Dropping
Columns or
Rows

Adding/Re-
moving
Columns

Renaming
Columns
Duplicating
Data
Changing
Data Types
Discretiz-
ation and
Binning
Encoding
Categorical
Variables

Use .apply() to apply a function along an axis of the
DataFrame or Series.

Transform values in a Series or DataFrame using a
mapping or a function.
Replace specific values in a DataFrame or Series

with other values.

Use .drop() to remove specified rows or columns
from a DataFrame.

Add or remove columns from a DataFrame using
assignment or the .drop() method.

Rename columns in a DataFrame using the
.rename() method.

Create copies of data using the .copy() method.

Convert data types of columns using the .astype()
method.

Convert continuous data into discrete intervals using
the .cut() function.

Convert categorical variables into numerical repres-
entations using techniques like one-hot encoding or
label encoding.

Last updated 6th April, 2024.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://apollopad.com

Pandas Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42963/

Data Transformation (cont) Basic Operations (cont)

Cheatography

Normalization Scale numeric data to a standard range or distri- Applying Condit- Using conditions to assign values or modify data
and Standardi- bution. ional Logic based on certain criteria.

zation

Merging/Conc- Combine multiple DataFrames either by concat-
atenating enating or merging based on common columns or Series One-dimensional labeled array that can hold any
DataFrames indices. data type.

DataFrame Two-dimensional labeled data structure with
Basic Operations

columns of potentially different types, akin to a

Slicing Selecting subsets of data using row and column labels spreadsheet or SQL table.
or positions. Indexing and Techniques for accessing specific elements, rows,
Filtering Applying conditions to extract specific rows or columns Selecting or columns within Series or DataFrame.
from a DataFrame. Data
Sorting Arranging data in ascending or descending order Basic Fundamental operations such as slicing, filtering,
based on one or more columns. Operations and sorting data for effective manipulation.
Applying Applying functions element-wise to data, either built-in Data Strategies for handling missing values, duplicates,
Functions or custom functions. Cleaning and other inconsistencies within the data.
Descriptive Calculating basic statistical measures like mean, Data Transf- Methods for applying functions, mapping values,
Statistics median, mode, etc., for data exploration. ormation and transforming data for analysis.
Data Automatically aligning data based on row and column Grouping and Techniques for grouping data based on specified
Alignment labels when performing operations between different Aggregating criteria and performing aggregations like sum,
DataFrames or Series. Data mean, count, etc.
Element- Performing operations like addition, subtraction, Merging and Methods for combining multiple DataFrames based
wise multiplication, and division on individual elements of a Joining on common columns or indices.
Operations DataFrame or Series. DataFrames
Aggreg- Computing summary statistics like sum, mean, count, Reshaping Tools for reshaping data using pivot tables, melting,
ating Data etc., over specified axes of the data. Data and other techniques to suit analytical needs.
Filling Handling missing or NaN values by filling them with a Time Series Handling and analyzing time-based data using
Missing specified value or using methods like forward-fill or Data pandas' specialized functionalities.
Values backward-fill.
By Arshdeep Not published yet. Sponsored by ApolloPad.com
cheatography.com/arshdeep/ Last updated 6th April, 2024. Everyone has a novel in them. Finish
Page 8 of 8. Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/pandas
http://www.cheatography.com/arshdeep/
https://apollopad.com

	Pandas Cheat Sheet - Page 1
	Introd­uction to Pandas
	Dealing with Outliers
	Data Cleaning
	Indexing and Selecting Data

	Pandas Cheat Sheet - Page 2
	Working with Excel Files
	Grouping and Aggreg­ating Data

	Pandas Cheat Sheet - Page 3
	Perfor­mance Optimi­zation
	Reshaping Data
	Input/­Output

	Pandas Cheat Sheet - Page 4
	Tips and Tricks for Efficient Pandas Usage
	Advanced Indexing

	Pandas Cheat Sheet - Page 5
	Working with JSON and XML Data
	Handling Catego­rical Data
	Visual­ization with Pandas
	Working with Text Data

	Pandas Cheat Sheet - Page 6
	Time Series Data
	Merging and Joining DataFrames

	Pandas Cheat Sheet - Page 7
	Data Transf­orm­ation

	Pandas Cheat Sheet - Page 8
	Data Structures
	Basic Operations

