
Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

Array SlicingArray Slicing

Defiti‐
nition

Array slicing allows you to extract specific parts of an array. It works
similarly to list slicing in Python.

Example arr = np.array([0, 1, 2, 3, 4, 5])

Slicing
syntax

arr[start:stop:step]

Basic
slicing

slice_1 = arr[1:4] # [1, 2, 3]
slice_2 = arr[:3] # [0, 1, 2]
slice_3 = arr[3:] # [3, 4, 5]

Negative
indexing

slice_4 = arr[-3:] # [3, 4, 5]
slice_5 = arr[:-2] # [0, 1, 2]

Step
slicing

slice_6 = arr[::2] # [0, 2, 4]
slice_7 = arr[1::2] # [1, 3, 5]

Reverse
array

slice_8 = arr[::-1] # [5, 4, 3, 2, 1, 0]

Slicing
2D
arrays

arr_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

slice_9 = arr_2d[:2, 1:] # [[2, 3], [5, 6]]

Performance Tips and TricksPerformance Tips and Tricks

Vector‐
ization

Utilize NumPy's built-in vectorized operations whenever
possible. These operations are optimized and signif‐
icantly faster than equivalent scalar operations.

Avoiding
Loops

Minimize the use of Python loops when working with
NumPy arrays. Instead, try to express operations as
array operations. Loops in Python can be slow compared
to vectorized operations.

Use
Broadc‐
asting

Take advantage of NumPy's broadcasting rules to
perform operations on arrays of different shapes effici‐
ently. Broadcasting allows NumPy to work with arrays of
different sizes without making unnecessary copies of
data.

Performance Tips and Tricks (cont)Performance Tips and Tricks (cont)

Avoid
Copies

Be mindful of unnecessary array copies, especially
when working with large datasets. NumPy arrays
share memory when possible, but certain operations
may create copies, which can impact performance and
memory usage.

Use In-
Place
Operations

Whenever feasible, use in-place operations (+=, *=,
etc.) to modify arrays without creating new ones. This
reduces memory overhead and can improve perfor‐
mance.

Memory
Layout

Understand how memory layout affects performance,
especially for large arrays. NumPy arrays can be
stored in different memory orders (C-order vs. Fortran-
order). Choosing the appropriate memory layout can
sometimes lead to better performance, especially
when performing operations along specific axes.

Data
Types

Choose appropriate data types for your arrays to
minimize memory usage and improve performance.
Using smaller data types (e.g., np.float32 instead of
np.float64) can reduce memory overhead and may
lead to faster computations, especially on platforms
with limited memory bandwidth.

NumExpr
and
Numba

Consider using specialized libraries like NumExpr or
Numba for performance-critical sections of your code.
These libraries can often provide significant speedups
by compiling expressions or functions to native
machine code.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 1 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy
http://www.cheatography.com/arshdeep/
https://readable.com

Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

Performance Tips and Tricks (cont)Performance Tips and Tricks (cont)

Parall‐
elism

NumPy itself doesn't provide built-in parallelism, but you
can leverage multi-threading or multi-processing libraries
like concurrent.futures or joblib to parallelize certain
operations, especially when working with large datasets
or computationally intensive tasks.

Profiling Use profiling tools like cProfile or specialized profilers
such as line_profiler or memory_profiler to identify perfor‐
mance bottlenecks in your code. Optimizing code based
on actual profiling results can lead to more significant
performance improvements.

Array Concatenation and SplittingArray Concatenation and Splitting

Concat‐
enation

array1 = np.array([[1, 2, 3], [4, 5, 6]])
array2 = np.array([[7, 8, 9]])
concatenated_array = np.concatenate((array1, array2), axis
=0)
vertically
print(concatenated_array)

numpy.c
oncat‐
enate()

Concatenates arrays along a specified axis.

numpy.v
stack()
and
numpy.h
stack()

Stack arrays vertically and horizontally, respectively.

numpy.d
stack()

Stack arrays depth-wise.

Splitting split_arrays = np.split(concatenated_array,
[2],
axis=0)
split after the second row
print(split_arrays)

numpy.s
plit()

Split an array into multiple sub-arrays along a specified axis.

numpy.h
split()
and
numpy.v
split()

Split arrays horizontally and vertically, respectively.

numpy.d
split()

Split arrays depth-wise.

Basic OperationsBasic Operations

Addition array1 + array2

Subtraction array1 - array2

Multiplication array1 * array2

Division array1 / array2

Floor Division array1 // array2

Modulus array1 % array2

Exponentiation array1 ** array2

Absolute np.abs(array)

Negative -array

Reciprocal 1 / array

Sum np.sum(array)

Minimum np.min(array)

Maximum np.max(array)

Mean np.mean(array)

Median np.median(array)

Standard Deviation np.std(array)

Variance np.var(array)

Dot Product np.dot(array1, array2)

Cross Product np.cross(array1, array2)

NaN HandlingNaN Handling

Identi‐
fying
NaNs

Use np.isnan() function to check for NaN values in an
array.

Removing
NaNs

Use np.isnan() to create a boolean mask, then use
boolean indexing to select non-NaN values.

Replacing
NaNs

Use np.nan_to_num() to replace NaNs with a specified
value. Use np.nanmean(), np.nanmedian(), etc., to
compute mean, median, etc., ignoring NaNs.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 2 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy
http://www.cheatography.com/arshdeep/
https://readable.com

Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

NaN Handling (cont)NaN Handling (cont)

Interp‐
olating
NaNs

Sure, here's a short content for "NaN Handling" on your
NumPy cheat sheet: NaN Handling: Identifying NaNs:
Use np.isnan() function to check for NaN values in an
array. Removing NaNs: Use np.isnan() to create a
boolean mask, then use boolean indexing to select
non-NaN values. Replacing NaNs: Use np.nan_to‐
_num() to replace NaNs with a specified value. Use
np.nanmean(), np.nanmedian(), etc., to compute
mean, median, etc., ignoring NaNs. Interpolating NaNs

Ignoring
NaNs in
Operations

Many NumPy functions have NaN-aware counterparts,
like np.nanmean(), np.nansum(), etc., that ignore
NaNs in computations.

Handling
NaNs in
Aggreg‐
ations

Aggregation functions (np.sum(), np.mean(), etc.)
typically return NaN if any NaNs are present in the
input array. Use skipna=True parameter in pandas
DataFrame functions for NaN handling.

Dealing
with NaNs
in Linear
Algebra

NumPy's linear algebra functions (np.linalg.inv(),
np.linalg.solve(), etc.) handle NaNs by raising LinAlg‐
Error.

BroadcastingBroadcasting

Broadcasting is a powerful feature in NumPy that allows arrays of
different shapes to be combined in arithmetic operations.

When operating on arrays of different shapes, NumPy automatically
broadcasts the smaller array across the larger array so that they
have compatible shapes.

This eliminates the need for explicit looping over array elements,
making code more concise and efficient.

Broadcasting is particularly useful for performing operations between
arrays of different dimensions or sizes without needing to reshape
them explicitly.

Mathematical FunctionsMathematical Functions

Definition NumPy provides a wide range of mathematical
functions that operate element-wise on arrays,
allowing for efficient computation across large
datasets.

Trigon‐
ometric
Functions

np.sin(), np.cos(), np.tan(), np.arcsin(), np.arccos(),
np.arctan()

Hyperbolic
Functions

np.sinh(), np.cosh(), np.tanh(), np.arcsinh(), np.arc‐
cosh(), np.arctanh()

Exponential
and Logari‐
thmic
Functions

np.exp(), np.log(), np.log2(), np.log10()

Rounding np.round(), np.floor(), np.ceil(), np.trunc()

Absolute
Value

np.abs()

Factorial
and
Combin‐
ations

np.factorial(), np.comb()

Gamma and
Beta
Functions

np.gamma(), np.beta()

Sum, Mean,
Median

np.sum(), np.mean(), np.median()

Standard
Deviation,
Variance

np.std(), np.var()

Matrix
Operations

np.dot(), np.inner(), np.outer(), np.cross()

Eigenvalues
and Eigenv‐
ectors

np.linalg.eig(), np.linalg.eigh(), np.linalg.eigvals()

Matrix
Decomposi‐
tions

np.linalg.svd(), np.linalg.qr(), np.linalg.cholesky()

Array CreationArray Creation

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy

numpy.a
rray()

Create an array from a Python list or tuple.

Example arr = np.array([1, 2, 3])

numpy.z
eros()

Create an array filled with zeros.

Example zeros_arr = np.zeros((3, 3))

numpy.o
nes()

Create an array filled with ones.

Example ones_arr = np.ones((2, 2))

numpy.a
range()

Create an array with a range of values.

Example range_arr = np.arange(0, 10, 2) # array([0, 2, 4, 6, 8]
)

numpy.l‐
in‐
space()

Create an array with evenly spaced values.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 3 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/arshdeep/
https://readable.com

Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

Array Creation (cont)Array Creation (cont)

Example linspace_arr = np.linspace(0, 10, 5) # array([0., 2.5, 5., 7.5, 10.
])

numpy.e‐
ye()

Create an identity matrix.

Example identity_mat = np.eye(3)

numpy.r‐
an‐
dom.rand()

Create an array with random values from a uniform distribution.

Example random_arr = np.random.rand(2, 2)

numpy.r‐
andom.ra‐
ndn()

Create an array with random values from a standard normal distribution.

Example random_normal_arr = np.random.randn(2, 2)

numpy.r‐
andom.ra‐
ndint()

Create an array with random integers.

Example random_int_arr = np.random.randint(0, 10, size=(2, 2))

numpy.f‐
ull()

Create an array filled with a specified value.

Example full_arr = np.full((2, 2), 7)

numpy.e‐
mpty()

Create an uninitialized array (values are not set, might be arbitrary).

Example empty_arr = np.empty((2, 2))

Linear AlgebraLinear Algebra

Matrix Multip‐
lication

np.dot() or @ operator for matrix multiplication.

Transpose np.transpose() or .T attribute for transposing a
matrix.

Inverse np.linalg.inv() for calculating the inverse of a matrix.

Determinant np.linalg.det() for computing the determinant of a
matrix.

Eigenvalues
and Eigenv‐
ectors

np.linalg.eig() for computing eigenvalues and
eigenvectors.

Matrix
Decomposi‐
tions

Functions like np.linalg.qr(), np.linalg.svd(), and
np.linalg.cholesky() for various matrix decomposi‐
tions.

Solving Linear
Systems

np.linalg.solve() for solving systems of linear
equations.

Vectorization Leveraging NumPy's broadcasting and array
operations for efficient linear algebra computations.

Statistical FunctionsStatistical Functions

mean Computes the arithmetic mean along a specified axis.

median Computes the median along a specified axis.

average Computes the weighted average along a specified axis.

std Computes the standard deviation along a specified axis.

var Computes the variance along a specified axis.

amin Finds the minimum value along a specified axis.

amax Finds the maximum value along a specified axis.

argmin Returns the indices of the minimum value along a
specified axis.

argmax Returns the indices of the maximum value along a
specified axis.

percentile Computes the q-th percentile of the data along a
specified axis.

histogram Computes the histogram of a set of data.

Comparison with Python ListsComparison with Python Lists

Perfor‐
mance

NumPy arrays are faster and more memory efficient
compared to Python lists, especially for large datasets.
This is because NumPy arrays are stored in
contiguous blocks of memory and have optimized
functions for mathematical operations, whereas
Python lists are more flexible but slower due to their
dynamic nature.

Vectorized
Operations

NumPy allows for vectorized operations, which means
you can perform operations on entire arrays without
the need for explicit looping. This leads to concise and
efficient code compared to using loops with Python
lists.

Multidime‐
nsional
Arrays

NumPy supports multidimensional arrays, whereas
Python lists are limited to one-dimensional arrays or
nested lists, which can be less intuitive for handling
multi-dimensional data.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 4 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy
http://www.cheatography.com/arshdeep/
https://readable.com

Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

Comparison with Python Lists (cont)Comparison with Python Lists (cont)

Broadc‐
asting

NumPy arrays support broadcasting, which enables
operations between arrays of different shapes and
sizes. In contrast, performing similar operations with
Python lists would require explicit looping or list
comprehensions.

Type
Stability

NumPy arrays have a fixed data type, which leads to
better performance and memory efficiency. Python lists
can contain elements of different types, leading to
potential type conversion overhead.

Rich Set of
Functions

NumPy provides a wide range of mathematical and
statistical functions optimized for arrays, whereas
Python lists require manual implementation or the use
of external libraries for similar functionality.

Memory
Usage

NumPy arrays typically consume less memory
compared to Python lists, especially for large datasets,
due to their fixed data type and efficient storage format.

Indexing
and Slicing

NumPy arrays offer more powerful and convenient
indexing and slicing capabilities compared to Python
lists, making it easier to manipulate and access
specific elements or subarrays.

Parallel
Processing

NumPy operations can leverage parallel processing
capabilities of modern CPUs through libraries like Intel
MKL or OpenBLAS, resulting in significant perfor‐
mance gains for certain operations compared to
Python lists.

Interoper‐
ability

NumPy arrays can be easily integrated with other
scientific computing libraries in Python ecosystem,
such as SciPy, Pandas, and Matplotlib, allowing
seamless data exchange and interoperability.

Masked ArraysMasked Arrays

Why? Masked arrays in NumPy allow you to handle missing
or invalid data efficiently.

What are
Masked
Arrays?

Masked arrays are arrays with a companion boolean
mask array, where elements that are marked as "mas‐
ked" are ignored during computations.

Creating
Masked
Arrays

You can create masked arrays using the numpy.m‐
a.masked_array function, specifying the data array and
the mask array.

Masking Masking is the process of marking certain elements of
an array as invalid or missing. You can manually
create masks or use functions like numpy.ma.masked‐
_where to create masks based on conditions.

Operations
with
Masked
Arrays

Operations involving masked arrays automatically
handle masked values by ignoring them in comput‐
ations. This allows for easy handling of missing data
without explicitly removing or replacing them.

Masked
Array
Methods

NumPy provides methods for masked arrays to
perform various operations like calculating statistics,
manipulating data, and more. These methods are
similar to regular array methods but handle masked
values appropriately.

Applic‐
ations

Masked arrays are useful in scenarios where datasets
contain missing or invalid data points. They are
commonly used in scientific computing, data analysis,
and handling time series data where missing values
are prevalent.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 5 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy
http://www.cheatography.com/arshdeep/
https://readable.com

Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

Random Number GenerationRandom Number Generation

np.random.rand Generates random numbers from a uniform
distribution over [0, 1).

np.random.randn Generates random numbers from a
standard normal distribution (mean 0,
standard deviation 1).

np.random.randint Generates random integers from a specified
low (inclusive) to high (exclusive) range.

np.random.random_s‐
ample or np.ran‐
dom.random

Generates random floats in the half-open
interval [0.0, 1.0).

np.random.choice Generates random samples from a given 1-
D array or list.

np.random.shuffle Shuffles the elements of an array in place.

np.random.permu‐
tation

Randomly permutes a sequence or returns
a permuted range.

np.random.seed Sets the random seed to ensure reproduci‐
bility of results.

Filtering ArraysFiltering Arrays

Filtering
Arrays

NumPy provides powerful tools for filtering arrays
based on certain conditions. Filtering allows you to
select elements from an array that meet specific
criteria.

Syntax filtered_array = array[condition]

Example import numpy as np
arr = np.array([1, 2, 3, 4, 5])
filtered = arr[arr > 2]
Select elements greater than 2
print(filtered)
Output: [3 4 5]

Combining
Conditions

Conditions can be combined using logical operators
like & (and) and | (or).

Filtering Arrays (cont)Filtering Arrays (cont)

Example arr = np.array([1, 2, 3, 4, 5])
filtered = arr[(arr > 2) & (arr < 5)]
Select elements between 2 and 5
print(filtered)
Output: [3 4]

Using
Functions

NumPy also provides functions like np.where() and np.ext‐
ract() for more complex filtering.

Example arr = np.array([1, 2, 3, 4, 5])
filtered = np.where(arr % 2 == 0, arr, 0)

Replace odd elements with 0
print(filtered)
Output: [0 2 0 4 0]

Array IterationArray Iteration

For
Loops

Iterate over arrays using traditional for loops. This is
useful for basic iteration but might not be the most
efficient method for large arrays.

nditer The nditer object allows iterating over arrays in a more
efficient and flexible way. It provides options to specify the
order of iteration, data type casting, and external loop
handling.

Flat
Iteration

The flat attribute of NumPy arrays returns an iterator that
iterates over all elements of the array as if it were a
flattened 1D array. This is useful for simple element-wise
operations.

Broadc‐
asting

When performing operations between arrays of different
shapes, NumPy automatically broadcasts the arrays to
compatible shapes. Understanding broadcasting rules
can help efficiently iterate over arrays without explicit
loops.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 6 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy
http://www.cheatography.com/arshdeep/
https://readable.com

Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

Array Iteration (cont)Array Iteration (cont)

Vectorized
Operations

Instead of explicit iteration, utilize NumPy's built-in
vectorized operations which operate on entire arrays
rather than individual elements. This often leads to
faster and more concise code.

Array ReshapingArray Reshaping

Array
Reshaping

Reshaping arrays in NumPy allows you to change the
shape or dimensions of an existing array without
changing its data. This is useful for tasks like
converting a 1D array into a 2D array or vice versa, or
for preparing data for certain operations like matrix
multiplication.

reshape() The reshape() function in NumPy allows you to change
the shape of an array to a specified shape.

For
example:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])
reshaped_arr = arr.reshape((2, 3))

Explan‐
ation

This will reshape the array arr into a 2x3 matrix.

resize() Similar to reshape(), resize() changes the shape of an
array, but it also modifies the original array if necessary
to accommodate the new shape.

Example arr = np.array([[1, 2], [3, 4]])
resized_arr = np.resize(arr, (3, 2))

Explan‐
ation

If the new shape requires more elements than the
original array has, resize() repeats the original array to
fill in the new shape.

flatten() The flatten() method collapses a multi-dimensional
array into a 1D array by iterating over all elements in
row-major (C-style) order.

Example arr = np.array([[1, 2], [3, 4]])
flattened_arr = arr.flatten()

Explan‐
ation

This will flatten the 2D array into a 1D array.

Array Reshaping (cont)Array Reshaping (cont)

ravel() Similar to flatten(), ravel() also flattens multi-dimensional
arrays into a 1D array, but it returns a view of the original
array whenever possible.

Example arr = np.array([[1, 2], [3, 4]])
raveled_arr = arr.ravel()

Explan‐
ation

This method can be more efficient in terms of memory
usage than flatten().

transp‐
ose()

The transpose() method rearranges the dimensions of an
array. For 2D arrays, it effectively swaps rows and
columns.

Example arr = np.array([[1, 2], [3, 4]])
transposed_arr = arr.transpose()

Explan‐
ation

This will transpose the 2x2 matrix, swapping rows and
columns.

Sorting ArraysSorting Arrays

np.sor‐
t(arr)

Returns a sorted copy of the array.

arr.sort() Sorts the array in-place.

np.arg‐
sort(arr)

Returns the indices that would sort the array.

np.lex‐
sort()

Performs an indirect sort using a sequence of keys.

np.sor‐
t_comp‐
lex(arr)

Sorts the array of complex numbers based on the real
part first, then the imaginary part.

np.par‐
tition‐
(arr, k)

Rearranges the elements in such a way that the kth
element will be in its correct position in the sorted array,
with all smaller elements to its left and all larger elements
to its right.

np.arg‐
partit‐
ion(arr,
k)

Returns the indices that would partition the array.

Array IndexingArray Indexing

Single
Element
Access

Use square brackets [] to access individual elements of
an array by specifying the indices for each dimension. For
example, arr[0, 1] accesses the element at the first row
and second column of the array arr.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 7 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy
http://www.cheatography.com/arshdeep/
https://readable.com

Numpy Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42960/

Array Indexing (cont)Array Indexing (cont)

Negative
Indexing

Negative indices can be used to access elements from
the end of the array. For instance, arr[-1] accesses the
last element of the array arr.

Slice
Indexing

NumPy arrays support slicing similar to Python lists.
You can use the colon : operator to specify a range of
indices. For example, arr[1:3] retrieves elements from
index 1 to index 2 (inclusive) along the first axis.

Integer
Array
Indexing

You can use arrays of integer indices to extract specific
elements from an array. For example, arr[[0, 2, 4]]
retrieves elements at indices 0, 2, and 4 along the first
axis.

Boolean
Array
Indexing
(Boolean
Masking)

You can use boolean arrays to filter elements from an
array based on a condition. For example, arr[arr > 0]
retrieves all elements of arr that are greater than zero.

Fancy
Indexing

Fancy indexing allows you to select multiple elements
from an array using arrays of indices or boolean masks.
This method can be used to perform advanced selection
operations efficiently.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 6th April, 2024.
Page 8 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/numpy
http://www.cheatography.com/arshdeep/
https://readable.com

	Numpy Cheat Sheet - Page 1
	Array Slicing
	Performance Tips and Tricks

	Numpy Cheat Sheet - Page 2
	Basic Operations
	Array Concatenation and Splitting
	NaN Handling

	Numpy Cheat Sheet - Page 3
	Mathematical Functions
	Broadcasting
	Array Creation

	Numpy Cheat Sheet - Page 4
	Statistical Functions
	Comparison with Python Lists
	Linear Algebra

	Numpy Cheat Sheet - Page 5
	Masked Arrays

	Numpy Cheat Sheet - Page 6
	Random Number Generation
	Array Iteration
	Filtering Arrays

	Numpy Cheat Sheet - Page 7
	Array Reshaping
	Sorting Arrays
	Array Indexing

	Numpy Cheat Sheet - Page 8

