Cheatography

Operators in MySQL

Comparison
Operators

=: Equal to

<> or l=:

Not equal to

<: Less than

>: Greater
than

<=: Less
than or
equal to
>=: Greater
than or

equal to

AND: Returns true if all

Arithmetic Operators

+: Addition

conditions separated by

AND are true

OR: Returns true if any

-: Subtraction

condition separated by OR

is true

NOT: Reverses the value of

*: Multiplication

the following condition

NULL Operators

IS NULL: Checks if a value

is NULL

IS NOT NULL: Checks if a
value is not NULL

/: Division

%: Modulus (Returns
the remainder of a
division)

LIKE: Used for pattern
matching in strings

String Functions

Function Explanation Example

CONCAT() Concatenates SELECT CONCAT('Hello ", 'World')
two or more AS ConcatenatedString; -- Output:
strings. Hello World

SUBSTR- Extracts a SELECT SUBSTRING('MySQL', 2,

ING() substring from 3) AS SubstringResult; -- Output:

a string. ySQ

UPPER() Converts a SELECT UPPER('mysql') AS
string to UppercaseString; -- Output: MYSQL
uppercase.

LOWER() Converts a SELECT LOWER('MYSQL') AS
string to LowercaseString; -- Output: mysq|
lowercase.

LENGTH() Returns the SELECT LENGTH('MySQL'") AS
length of a StringLength; -- Output: 5
string.

By Arshdeep Not published yet.

cheatography.com/arshdeep/

Page 1 of 7.

Last updated 23rd March, 2024.

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Logical Operators

String Functions (cont)

TRIM() Removes leading SELECT TRIM(' MySQL ') AS
and trailing spaces TrimmedString; -- Output:
from a string. MySQL

REPLACE() Replaces occurr- SELECT REPLACE('Hello

ences of a World', 'World', 'MySQL') AS
ReplacedString; -- Output:

Hello MySQL

specified substring
within a string.

Date and Time Functions

Function Explan- Example
ation

NOW() Returns SELECT NOW() AS CurrentDateTime;
the current -- Output: Current date and time in
date and "YYYY-MM-DD HH:MM:SS' format
time.

CURDATE() Returns SELECT CURDATE() AS CurrentDate;
the current -- Output: Current date in 'YYYY-MM-
date. DD' format

CURTIME() Returns SELECT CURTIME() AS CurrentTime;
the current -- Output: Current time in '"HH:MM:SS'
time. format

YEAR() Extracts SELECT YEAR('2024-03-23") AS
the year ExtractedYear; -- Output: 2024
from a
date.

MONTH() Extracts SELECT MONTH('2024-03-23") AS
the month ExtractedMonth; -- Output: 3
from a
date.

DAY() Extracts SELECT DAY('2024-03-23") AS Extrac-
the day tedDay; -- Output: 23
from a
date.

Window Functions

Function Explanation Example

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Joins

Cheatography

Window Functions (cont)

ROW_N This function assigns a SELECT name, Join Explanation Syntax Example
UMBER() unique integer to each row ROW_NUMBER() OVER INNER Returns records SELECT SELECT
within a partition according (ORDER BY salary JOIN that have matching columns orders.order_id,
to the specified order. It DESC) AS row_num values in both FROM table1 customers.custo-
starts from 1 for the firstrow FROM employees; tables. INNER JOIN mer name FROM
and increments by 1 for table2 ON orders INNER
each subsequent row. table1.column JOIN customers
RANK() Similar to ROW_NU- SELECT name, RANK() = table2.co- ON orders.custo-
MBER(), but RANK() OVER (ORDER BY lumn; mer_id = custom-
assigns the same rank to score DESC) AS rank ers.customer_id;
e LEFT Retunsallrecords ~ SELECT SELECT custom-
leaves gaps in the JOIN from the left table columns ers.customer-
sequence for ties. (or and the matched FROM table1 _name, orders.or-
DENSE_- DENSE_RANK() is similar SELECT name, LEFT records from the LEFT JOIN der_id FROM
RANK() to RANK(), but it does not DENSE_RANK() OVER OUTER right table. If there's table2 ON customers LEFT
leave gaps in the ranking (ORDER BY age) AS JOIN) no match, the result table1.column JOIN orders ON
sequence for ties. dense_rank FROM is NULL on the right = table2.co- customers.custo-
users; side. lumn; mer_id =
NTILE() This function divides the SELECT name, salary, orders.custo-
result set into a specified NTILE(4) OVER mer_id;
number of buckets and (ORDER BY salary) AS RIGHT Returns allrecords SELECT SELECT
assigns a bucket numberto quartile FROM JOIN from the right table columns orders.order_id,
each row. It ensures an employees; (or and the matched FROM table1 customers.custo-
approximately equal RIGHT records from the RIGHT JOIN mer_name FROM
number of rows in each OUTER left table. If there's table2 ON orders RIGHT
bucket. JOIN) no match, the result table1.column JOIN customers
LEAD() LEAD() and LAG() functions SELECT name, salary, is NULL on'the left = table2.co- ON orders.custo-
and allow you to access data LEAD(salary) OVER side. lumn; mer_id = custom-
LAG() from a subsequent or (ORDER BY salary) AS ers.customer_id;

previous row in the result
set, respectively.

next_salary, LAG(salary)
OVER (ORDER BY
salary) AS previous_-

salary FROM employees;

By Arshdeep Not published yet.
Last updated 23rd March, 2024.

Page 2 of 7.

Sponsored by Readable.com
cheatography.com/arshdeep/ Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

Cheatography

Joins (cont)

FULL
JOIN
(or
FULL
OUTER
JOIN)

CROSS
JOIN

Self-
Join

Returns all
records when
there's a match in
either left or right
table. If there's no
match, the result
is NULL on the
unmatched side.

Returns the
Cartesian product
of the two tables,
i.e., all possible
combinations of

rows.

Joins a table with
itself, typically
used to compare
rows within the
same table.

SELECT
columns
FROM table1
FULL JOIN
table2 ON
table1.column
= table2.co-
lumn;

SELECT
columns
FROM table1
CROSS JOIN
table2;

SELECT
columns
FROM table1
alias1 INNER
JOIN table1
alias2 ON
alias1.column
= alias2.co-
lumn;

SELECT custom-
ers.customer-
_name, orders.or-
der_id FROM
customers FULL
JOIN orders ON
customers.custo-
mer_id = orders.cu-
stomer_id;

SELECT * FROM
employees CROSS
JOIN departments;

SELECT e1.emp-
loyee_name,
e2.manager_name
FROM employees
e1 INNER JOIN
employees e2 ON
el.manager_id =
e2.employee_id;

Stored Procedure

Definition

Syntax

Parameters

A stored procedure is a prepared SQL code that you

can save, so the code can be reused over and over

again. It's like a function in a traditional programming

language.

CREATE PROCEDURE procedure_name (param-
eters) BEGIN -- SQL statements END,;

Stored procedures can accept input parameters, which

can be used within the procedure's SQL statements.

By Arshdeep

cheatography.com/arshdeep/

Not published yet.

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Stored Procedure (cont)

Example

Calling a
Stored
Procedure

Example

Dropping
a Stored
Procedure

Example

Variables

Example

Control
Flow

Example

Cursors

CREATE PROCEDURE GetEmployee(IN emp_id INT)
BEGIN SELECT * FROM employees WHERE employ-
ee_id = emp_id; END;

CALL procedure_name(arguments);

CALL GetEmployee(1001);
DROP PROCEDURE IF EXISTS procedure_name;

DROP PROCEDURE IF EXISTS GetEmployee;

Stored procedures can declare and use variables within
their code.

CREATE PROCEDURE UpdateSalary(IN emp_id INT,
IN salary DECIMAL(10, 2)) BEGIN DECLARE
emp_name VARCHAR(50); SELECT employee_name
INTO emp_name FROM employees WHERE employ-
ee_id = emp_id; UPDATE employees SET employee_-
salary = salary WHERE employee_id = emp_id; END;

Stored procedures support control flow constructs such
as IF, CASE, and LOOP.

CREATE PROCEDURE CheckAge(IN age INT) BEGIN
IF age < 18 THEN SELECT 'Minor'; ELSEIF age
BETWEEN 18 AND 64 THEN SELECT 'Adult’; ELSE
SELECT 'Senior'; END IF; END;

Stored procedures can use cursors to process multiple
rows returned by a query.

Last updated 23rd March, 2024.

Page 3 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

Cheatography

Stored Procedure (cont)

Example CREATE PROCEDURE DisplayEmployees() BEGIN
DECLARE done BOOLEAN DEFAULT FALSE;
DECLARE emp_name VARCHAR(50); DECLARE
emp_salary DECIMAL(10, 2); DECLARE emp_cursor
CURSOR FOR SELECT employee_name, employee_-
salary FROM employees; DECLARE CONTINUE
HANDLER FOR NOT FOUND SET done = TRUE; OPEN
emp_cursor; read_loop: LOOP FETCH emp_cursor INTO
emp_name, emp_salary; IF done THEN LEAVE
read_loop; END IF; -- Process fetched data END LOOP;
CLOSE emp_cursor; END;

Indexing Indexing is a way to optimize database performance by
quickly locating rows in a table. It allows for faster
retrieval of data by creating a sorted reference to the
data in a table.

Types Single Column Index, Composite Index, Unique Index,
Primary Key, and Foreign Key

Single Index created on a single column.

Column

Index

Composite Index created on multiple columns.

Index

Unique Index where all values must be unique (no duplicate

Index values).

Primary Unique index with the constraint that all values must be

Key unique and not NULL. Typically used to uniquely
identify each row in a table.

Foreign Index that references the primary key in another table.

Key Used to establish relationships between tables.

Creating Indexes

By Arshdeep
cheatography.com/arshdeep/

Not published yet.

Page 4 of 7.

Last updated 23rd March, 2024.

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Indexing (cont)

Syntax CREATE [UNIQUE] INDEX index_name ON table_name
(column_name);
Example CREATE INDEX idx_lastname ON employees (last_-

name);
Dropping Indexes:
Syntax DROP INDEX index_name ON table_name;
Example DROP INDEX idx_lasthname ON employees;
Viewing Indexes:
Syntax SHOW INDEX FROM table_name;

Example SHOW INDEX FROM employees;

Types of SQL Functions

Scalar Functions: Scalar functions operate on individual rows and
return a single result per row. They can be used in SELECT,
WHERE, ORDER BY, and other clauses.

Aggregate Functions: Aggregate functions operate on sets of rows
and return a single result that summarizes the entire set. They are
commonly used with the GROUP BY clause.

Window Functions: Window functions perform calculations across a
set of rows related to the current row, without collapsing the result
set into a single row. They are used with the OVER() clause.

Control Flow Functions: Control flow functions allow conditional
execution of logic within SQL statements. They are often used to
implement branching or conditional behavior.

User-Defined Functions (UDFs): User-defined functions are custom
functions created by users to perform specific tasks that are not
provided by built-in functions. They can be written in languages like
SQL, C, or C++ and loaded into MySQL.

Numeric Functions

Function Explanation Example

ABS() Returns the absolute SELECT ABS(-10) AS
value of a number. AbsoluteValue; -- Output:

10

ROUND() Rounds a number to a SELECT ROUND(3.14159,
specified number of 2) AS RoundedNumber; --
decimal places. Output: 3.14

CEIL() Returns the smallest SELECT CEIL(3.2) AS

integer greater than or CeilingValue; -- Output: 4

equal to a number.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Numeric Functions (cont)

Cheatography

Control Flow Functions

FLOOR() Returns the largest integer SELECT FLOOR(3.8) AS Function Explanation Syntax Example
less than or equal to a FloorValue; -- Output: 3 CASE The CASE CASE SELECT CASE
number. Statement statement evaluates WHEN WHEN age <
MOD() Returns the remainder of a SELECT MOD(10, 3) AS a list of conditions condition1 18 THEN
division operation. ModulusValue; -- Output: and returns one of THEN 'Minor' WHEN
1 multiple possible result1 age BETWEEN
result expressions. WHEN 18 AND 64
Aggregate Functions It's similar to a condition2 THEN 'Adult'
BrEen Explanation Example switch or if-else THEN ELSE 'Senior
statement in other result2... END AS
COUNT() The COUNT() function SELECT COUNT(*))
programming ELSE age_group
returns the number of rows AS total_customers
languages. default_r- FROM persons;
that match a specified FROM customers;
esult END
condition.
- . P —— IF() Function The IF() function IF(con- SELECT
ti =
0 Ie | 0 hunc on - G I(qu returns one value if dition, IF(score >= 60,
tes t tit tot: -
caloulates the sum o antity) AS total_qua a condition is TRUE value_if - 'Pass', 'Fail)
values in a column. ntity FROM orders;)
and another value if true, AS result
AVG() The AVG() function SELECT AVG(price) the condition is value_if - FROM
calculates the average of AS average_price FALSE. false) students:
| i I . FROM products;
values ina coumn products COALESCE() The COALESCE() COALES- SELECT
MAX() The MAX() function returns ~ SELECT MAX(salary) Function function returns the ~ CE(- COALESCE(fir-
the maximum value in a AS max_salary FROM first non-NULL value1 st name
column. employees; value in a list of value2, 'Anonymous')
MIN() The MIN() function returns ~ SELECT MIN(age) AS expressions. o) AS displa-
the minimum value in a min_age FROM users; y_name FROM
column. users;
GROUP_- The GROUP_CONCAT() SELECT GROUP_- NULLIF() The NULLIF() NULLIF- SELECT
CONCAT() function concatenates the CONCAT(product_- Function function returns (expre- NULLIF(di-
values of a column into a name) AS product_list NULL if the two ssion1, vidend, 0) AS
single string. FROM products; specified expres- expres- result FROM
STD() The STD() function SELECT STD(sales) sions are equal; sion2) calculations;
calculates the standard AS sales_std_de- otherwise, it returns
deviation of values in a viation FROM monthl- the first expression.
column. y_sales;
VARIANCE() The VARIANCE() function = SELECT VARIANCE(-

calculates the variance of
values in a column.

height) AS height_va-
riance FROM students;

By Arshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 5 of 7.

Sponsored by Readable.com

Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

Cheatography

Subqueries

Subquery

A subquery, also known as a nested
query or inner query, is a query
nested within another SQL
statement. It allows you to use the
result of one query as a part of
another query.

Single-Row Subquery: Returns only
one row of results.

Multiple-Row Subquery: Returns
multiple rows of results.

Inline View Subquery: Creates a
temporary table within a query.

Correlated Subquery: References
one or more columns in the outer

query.

Example

SELECT column_name
FROM table_name WHERE
column_name OPERATOR
(SELECT column_name
FROM table_name WHERE
condition);

SELECT name FROM
employees WHERE employ-
ee_id = (SELECT manager_id
FROM departments WHERE
department_id = 100);

SELECT product_name
FROM products WHERE
category_id IN (SELECT
category_id FROM categories
WHERE category_name =
'Electronics');

SELECT * FROM (SELECT
employee_id, first_name,
last_name FROM employees)
AS emp_info WHERE
emp_info.employee_id > 100;
SELECT product_name
FROM products p WHERE
p.unit_price > (SELECT
AVG(unit_price) FROM
products WHERE category_id
= p.category_id);

Common Table Expressions (CTE)

Explan
ation

Syntax

Common Table Expressions (CTEs) provide a way to
define temporary result sets that can be referenced within

a single SELECT, INSERT, UPDATE, or DELETE
statement. They enhance the readability and maintainability
of complex queries.

WITH cte_name (column1, column2, ...) AS (-- CTE query
SELECT ... FROM ... WHERE ...) -- Main query using the
CTE SELECT ... FROM cte_name;

By Arshdeep
cheatography.com/arshdeep/

Not published yet.

Page 6 of 7.

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Common Table Expressions (CTE) (cont)

Example

-- Define a CTE to get the top 5 customers with the
highest total orders WITH top_customers AS (SELECT
customer_id, SUM(order_total) AS total_spent FROM
orders GROUP BY customer_id ORDER BY total_spent
DESC LIMIT 5) -- Use the CTE to get detailed inform-
ation about the top customers SELECT c.customer_id,
c.customer_name, tc.total_spent FROM customers ¢
JOIN top_customers tc ON c.customer_id = tc.custom-
er_id;

Views

Explan-
ation

Syntax
to
Create
Views

Example
to
Create
Views

Syntax
to Drop
Views

Example
to Drop
Views

Syntax
to
Update
View
Example
to
Update
View

Views in MySQL are virtual tables created by executing a
SELECT query and are stored in the database. They
allow users to simplify complex queries, restrict access to
certain columns, and provide a layer of abstraction over
the underlying tables.

CREATE VIEW view_name AS SELECT column1,
column2, ... FROM table_name WHERE condition;

CREATE VIEW customer_contacts AS SELECT custom-
er_id, first_name, last_name, email FROM customers
WHERE subscription_status = 'active';

DROP VIEW view_name;

DROP VIEW customer_contacts;

CREATE OR REPLACE VIEW view_name AS SELECT
new_column1, new_column2, ... FROM new_table
WHERE new_condition;

CREATE OR REPLACE VIEW active_customers AS
SELECT customer_id, first_name, last_name, email
FROM customers WHERE subscription_status = 'active’;

Last updated 23rd March, 2024.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Cheatography

Syntax to Retrieve Data SELECT * FROM view_name; Accessing Use NEW.column_name to access the new value of a
Example to Retrieve Data ~ SELECT * FROM customer_contacts; Data column in an INSERT or UPDATE trigger. Use OLD.co-
lumn_name to access the old value of a column in an

Trigger UPDATE or DELETE trigger.

Dropping DROP TRIGGER [IF EXISTS] trigger_name;
a Trigger

Introduction A trigger is a database object that automatically
performs an action in response to certain events on a

particular table.
Performance Optimization

Syntax CREATE TRIGGER trigger_name {BEFORE |

AFTER} {INSERT | UPDATE | DELETE} ON Indexing:

table_name FOR EACH ROW trigger_body Use Indexes Indexes help in speeding up the data retrieval
trigge- Name of the trigger. process by creating efficient lookup paths.
r_name Choose the Identify columns frequently used in WHERE,
BEFORE| Specifies when the trigger should be fired, before or Right Columns JOIN, and ORDER BY clauses for indexing.
AFTER after the event. Avoid Overin- Unnecessary indexes can slow down write
INSERT | Specifies the event that triggers the action. dexing operations and consume disk space.
UPDATE | Regularly Monitor index usage and performance regularly.
DELETE Analyze and Use tools like EXPLAIN to analyze query
table_name Name of the table on which the trigger operates. Optimize execution plans.

Ind

FOR EACH Indicates that the trigger will be fired for each row naexes
ROW affected by the triggering event. Query Optimization:
trigge- Actions to be performed when the trigger is fired. Optimize Write efficient queries by avoiding unnecessary
r_body Queries joins, using appropriate WHERE clauses, and

minimizing data retrieval.
Example CREATE TRIGGER audit_trigger AFTER INSERT ON [eV

employees FOR EACH ROW BEGIN INSERT INTO Use LIMIT When fetching a Iarge dataset, limit the number of

audit_log (event_type, event_time, user_id) VALUES rows returned to reduce the workload on the

('INSERT', NOW(), NEW.id); END; server.
BEFORE Fired before the triggering action occurs. Can be used Avoid SELECT Explicitly specify only the required columns in
SELECT statements to reduce data transfer

Triggers to modify data before it is inserted, updated, or
deleted. overhead.
AFTER Fired after the triggering action occurs. Can be used
Triggers for logging, auditing, or other post-action tasks.
By Arshdeep Not published yet. Sponsored by Readable.com
cheatography.com/arshdeep/ Last updated 23rd March, 2024. Measure your website readability!

Page 7 of 7. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

	MySQL Concepts Cheat Sheet - Page 1
	Operators in MySQL
	Date and Time Functions
	String Functions
	Window Functions

	MySQL Concepts Cheat Sheet - Page 2
	Joins

	MySQL Concepts Cheat Sheet - Page 3
	Stored Procedure

	MySQL Concepts Cheat Sheet - Page 4
	Indexing
	Types of SQL Functions
	Numeric Functions

	MySQL Concepts Cheat Sheet - Page 5
	Control Flow Functions
	Aggregate Functions

	MySQL Concepts Cheat Sheet - Page 6
	Subqueries
	Views
	Common Table Expres­sions (CTE)

	MySQL Concepts Cheat Sheet - Page 7
	Trigger
	Perfor­mance Optimi­zation

