
MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Operators in MySQLOperators in MySQL

Comparison
Operators

Logical Operators Arithmetic Operators

=: Equal to AND: Returns true if all
conditions separated by
AND are true

+: Addition

<> or !=:
Not equal to

OR: Returns true if any
condition separated by OR
is true

-: Subtraction

<: Less than NOT: Reverses the value of
the following condition

*: Multiplication

>: Greater
than

NULL Operators /: Division

<=: Less
than or
equal to

IS NULL: Checks if a value
is NULL

%: Modulus (Returns
the remainder of a
division)

>=: Greater
than or
equal to

IS NOT NULL: Checks if a
value is not NULL

LIKE: Used for pattern
matching in strings

String FunctionsString Functions

Function Explanation Example

CONCAT() Concatenates
two or more
strings.

SELECT CONCAT('Hello ', 'World')
AS ConcatenatedString; -- Output:
Hello World

SUBSTR‐
ING()

Extracts a
substring from
a string.

SELECT SUBSTRING('MySQL', 2,
3) AS SubstringResult; -- Output:
ySQ

UPPER() Converts a
string to
uppercase.

SELECT UPPER('mysql') AS
UppercaseString; -- Output: MYSQL

LOWER() Converts a
string to
lowercase.

SELECT LOWER('MYSQL') AS
LowercaseString; -- Output: mysql

LENGTH() Returns the
length of a
string.

SELECT LENGTH('MySQL') AS
StringLength; -- Output: 5

String Functions (cont)String Functions (cont)

TRIM() Removes leading
and trailing spaces
from a string.

SELECT TRIM(' MySQL ') AS
TrimmedString; -- Output:
MySQL

REPLACE() Replaces occurr‐
ences of a
specified substring
within a string.

SELECT REPLACE('Hello
World', 'World', 'MySQL') AS
ReplacedString; -- Output:
Hello MySQL

Date and Time FunctionsDate and Time Functions

Function Explan‐
ation

Example

NOW() Returns
the current
date and
time.

SELECT NOW() AS CurrentDateTime;
-- Output: Current date and time in
'YYYY-MM-DD HH:MM:SS' format

CURDATE() Returns
the current
date.

SELECT CURDATE() AS CurrentDate;
-- Output: Current date in 'YYYY-MM-
DD' format

CURTIME() Returns
the current
time.

SELECT CURTIME() AS CurrentTime;
-- Output: Current time in 'HH:MM:SS'
format

YEAR() Extracts
the year
from a
date.

SELECT YEAR('2024-03-23') AS
ExtractedYear; -- Output: 2024

MONTH() Extracts
the month
from a
date.

SELECT MONTH('2024-03-23') AS
ExtractedMonth; -- Output: 3

DAY() Extracts
the day
from a
date.

SELECT DAY('2024-03-23') AS Extrac‐
tedDay; -- Output: 23

Window FunctionsWindow Functions

Function Explanation Example

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 1 of 7.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Window Functions (cont)Window Functions (cont)

ROW_N
UMBER()

This function assigns a
unique integer to each row
within a partition according
to the specified order. It
starts from 1 for the first row
and increments by 1 for
each subsequent row.

SELECT name,
ROW_NUMBER() OVER
(ORDER BY salary
DESC) AS row_num
FROM employees;

RANK() Similar to ROW_NU‐
MBER(), but RANK()
assigns the same rank to
rows with equal values and
leaves gaps in the
sequence for ties.

SELECT name, RANK()
OVER (ORDER BY
score DESC) AS rank
FROM students;

DENSE_‐
RANK()

DENSE_RANK() is similar
to RANK(), but it does not
leave gaps in the ranking
sequence for ties.

SELECT name,
DENSE_RANK() OVER
(ORDER BY age) AS
dense_rank FROM
users;

NTILE() This function divides the
result set into a specified
number of buckets and
assigns a bucket number to
each row. It ensures an
approximately equal
number of rows in each
bucket.

SELECT name, salary,
NTILE(4) OVER
(ORDER BY salary) AS
quartile FROM
employees;

LEAD()
and
LAG()

LEAD() and LAG() functions
allow you to access data
from a subsequent or
previous row in the result
set, respectively.

SELECT name, salary,
LEAD(salary) OVER
(ORDER BY salary) AS
next_salary, LAG(salary)
OVER (ORDER BY
salary) AS previous_‐
salary FROM employees;

JoinsJoins

Join Explanation Syntax Example

INNER
JOIN

Returns records
that have matching
values in both
tables.

SELECT
columns
FROM table1
INNER JOIN
table2 ON
table1.column
= table2.co‐
lumn;

SELECT
orders.order_id,
customers.custo‐
mer_name FROM
orders INNER
JOIN customers
ON orders.custo‐
mer_id = custom‐
ers.customer_id;

LEFT
JOIN
(or
LEFT
OUTER
JOIN)

Returns all records
from the left table
and the matched
records from the
right table. If there's
no match, the result
is NULL on the right
side.

SELECT
columns
FROM table1
LEFT JOIN
table2 ON
table1.column
= table2.co‐
lumn;

SELECT custom‐
ers.customer‐
_name, orders.or‐
der_id FROM
customers LEFT
JOIN orders ON
customers.custo‐
mer_id =
orders.custo‐
mer_id;

RIGHT
JOIN
(or
RIGHT
OUTER
JOIN)

Returns all records
from the right table
and the matched
records from the
left table. If there's
no match, the result
is NULL on the left
side.

SELECT
columns
FROM table1
RIGHT JOIN
table2 ON
table1.column
= table2.co‐
lumn;

SELECT
orders.order_id,
customers.custo‐
mer_name FROM
orders RIGHT
JOIN customers
ON orders.custo‐
mer_id = custom‐
ers.customer_id;

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 2 of 7.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Joins (cont)Joins (cont)

FULL
JOIN
(or
FULL
OUTER
JOIN)

Returns all
records when
there's a match in
either left or right
table. If there's no
match, the result
is NULL on the
unmatched side.

SELECT
columns
FROM table1
FULL JOIN
table2 ON
table1.column
= table2.co‐
lumn;

SELECT custom‐
ers.customer‐
_name, orders.or‐
der_id FROM
customers FULL
JOIN orders ON
customers.custo‐
mer_id = orders.cu‐
stomer_id;

CROSS
JOIN

Returns the
Cartesian product
of the two tables,
i.e., all possible
combinations of
rows.

SELECT
columns
FROM table1
CROSS JOIN
table2;

SELECT * FROM
employees CROSS
JOIN departments;

Self-
Join

Joins a table with
itself, typically
used to compare
rows within the
same table.

SELECT
columns
FROM table1
alias1 INNER
JOIN table1
alias2 ON
alias1.column
= alias2.co‐
lumn;

SELECT e1.emp‐
loyee_name,
e2.manager_name
FROM employees
e1 INNER JOIN
employees e2 ON
e1.manager_id =
e2.employee_id;

Stored ProcedureStored Procedure

Definition A stored procedure is a prepared SQL code that you
can save, so the code can be reused over and over
again. It's like a function in a traditional programming
language.

Syntax CREATE PROCEDURE procedure_name (param‐
eters) BEGIN -- SQL statements END;

Parameters Stored procedures can accept input parameters, which
can be used within the procedure's SQL statements.

Stored Procedure (cont)Stored Procedure (cont)

Example CREATE PROCEDURE GetEmployee(IN emp_id INT)
BEGIN SELECT * FROM employees WHERE employ‐
ee_id = emp_id; END;

Calling a
Stored
Procedure

CALL procedure_name(arguments);

Example CALL GetEmployee(1001);

Dropping
a Stored
Procedure

DROP PROCEDURE IF EXISTS procedure_name;

Example DROP PROCEDURE IF EXISTS GetEmployee;

Variables Stored procedures can declare and use variables within
their code.

Example CREATE PROCEDURE UpdateSalary(IN emp_id INT,
IN salary DECIMAL(10, 2)) BEGIN DECLARE
emp_name VARCHAR(50); SELECT employee_name
INTO emp_name FROM employees WHERE employ‐
ee_id = emp_id; UPDATE employees SET employee_‐
salary = salary WHERE employee_id = emp_id; END;

Control
Flow

Stored procedures support control flow constructs such
as IF, CASE, and LOOP.

Example CREATE PROCEDURE CheckAge(IN age INT) BEGIN
IF age < 18 THEN SELECT 'Minor'; ELSEIF age
BETWEEN 18 AND 64 THEN SELECT 'Adult'; ELSE
SELECT 'Senior'; END IF; END;

Cursors Stored procedures can use cursors to process multiple
rows returned by a query.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 3 of 7.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Stored Procedure (cont)Stored Procedure (cont)

Example CREATE PROCEDURE DisplayEmployees() BEGIN
DECLARE done BOOLEAN DEFAULT FALSE;
DECLARE emp_name VARCHAR(50); DECLARE
emp_salary DECIMAL(10, 2); DECLARE emp_cursor
CURSOR FOR SELECT employee_name, employee_‐
salary FROM employees; DECLARE CONTINUE
HANDLER FOR NOT FOUND SET done = TRUE; OPEN
emp_cursor; read_loop: LOOP FETCH emp_cursor INTO
emp_name, emp_salary; IF done THEN LEAVE
read_loop; END IF; -- Process fetched data END LOOP;
CLOSE emp_cursor; END;

IndexingIndexing

Indexing Indexing is a way to optimize database performance by
quickly locating rows in a table. It allows for faster
retrieval of data by creating a sorted reference to the
data in a table.

Types Single Column Index, Composite Index, Unique Index,
Primary Key, and Foreign Key

Single
Column
Index

Index created on a single column.

Composite
Index

Index created on multiple columns.

Unique
Index

Index where all values must be unique (no duplicate
values).

Primary
Key

Unique index with the constraint that all values must be
unique and not NULL. Typically used to uniquely
identify each row in a table.

Foreign
Key

Index that references the primary key in another table.
Used to establish relationships between tables.

Creating Indexes

Indexing (cont)Indexing (cont)

Syntax CREATE [UNIQUE] INDEX index_name ON table_name
(column_name);

Example CREATE INDEX idx_lastname ON employees (last_‐
name);

Dropping Indexes:

Syntax DROP INDEX index_name ON table_name;

Example DROP INDEX idx_lastname ON employees;

Viewing Indexes:

Syntax SHOW INDEX FROM table_name;

Example SHOW INDEX FROM employees;

Types of SQL FunctionsTypes of SQL Functions

Scalar Functions: Scalar functions operate on individual rows and
return a single result per row. They can be used in SELECT,
WHERE, ORDER BY, and other clauses.

Aggregate Functions: Aggregate functions operate on sets of rows
and return a single result that summarizes the entire set. They are
commonly used with the GROUP BY clause.

Window Functions: Window functions perform calculations across a
set of rows related to the current row, without collapsing the result
set into a single row. They are used with the OVER() clause.

Control Flow Functions: Control flow functions allow conditional
execution of logic within SQL statements. They are often used to
implement branching or conditional behavior.

User-Defined Functions (UDFs): User-defined functions are custom
functions created by users to perform specific tasks that are not
provided by built-in functions. They can be written in languages like
SQL, C, or C++ and loaded into MySQL.

Numeric FunctionsNumeric Functions

Function Explanation Example

ABS() Returns the absolute
value of a number.

SELECT ABS(-10) AS
AbsoluteValue; -- Output:
10

ROUND() Rounds a number to a
specified number of
decimal places.

SELECT ROUND(3.14159,
2) AS RoundedNumber; --
Output: 3.14

CEIL() Returns the smallest
integer greater than or
equal to a number.

SELECT CEIL(3.2) AS
CeilingValue; -- Output: 4

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 4 of 7.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Numeric Functions (cont)Numeric Functions (cont)

FLOOR() Returns the largest integer
less than or equal to a
number.

SELECT FLOOR(3.8) AS
FloorValue; -- Output: 3

MOD() Returns the remainder of a
division operation.

SELECT MOD(10, 3) AS
ModulusValue; -- Output:
1

Aggregate FunctionsAggregate Functions

Function Explanation Example

COUNT() The COUNT() function
returns the number of rows
that match a specified
condition.

SELECT COUNT(*)
AS total_customers
FROM customers;

SUM() The SUM() function
calculates the sum of
values in a column.

SELECT SUM(qu‐
antity) AS total_qua‐
ntity FROM orders;

AVG() The AVG() function
calculates the average of
values in a column.

SELECT AVG(price)
AS average_price
FROM products;

MAX() The MAX() function returns
the maximum value in a
column.

SELECT MAX(salary)
AS max_salary FROM
employees;

MIN() The MIN() function returns
the minimum value in a
column.

SELECT MIN(age) AS
min_age FROM users;

GROUP_‐
CONCAT()

The GROUP_CONCAT()
function concatenates the
values of a column into a
single string.

SELECT GROUP_‐
CONCAT(product_‐
name) AS product_list
FROM products;

STD() The STD() function
calculates the standard
deviation of values in a
column.

SELECT STD(sales)
AS sales_std_de‐
viation FROM monthl‐
y_sales;

VARIANCE() The VARIANCE() function
calculates the variance of
values in a column.

SELECT VARIANCE(‐
height) AS height_va‐
riance FROM students;

Control Flow FunctionsControl Flow Functions

Function Explanation Syntax Example

CASE
Statement

The CASE
statement evaluates
a list of conditions
and returns one of
multiple possible
result expressions.
It's similar to a
switch or if-else
statement in other
programming
languages.

CASE
WHEN
condition1
THEN
result1
WHEN
condition2
THEN
result2 ...
ELSE
default_r‐
esult END

SELECT CASE
WHEN age <
18 THEN
'Minor' WHEN
age BETWEEN
18 AND 64
THEN 'Adult'
ELSE 'Senior'
END AS
age_group
FROM persons;

IF() Function The IF() function
returns one value if
a condition is TRUE
and another value if
the condition is
FALSE.

IF(con‐
dition,
value_if_‐
true,
value_if_‐
false)

SELECT
IF(score >= 60,
'Pass', 'Fail')
AS result
FROM
students;

COALESCE()
Function

The COALESCE()
function returns the
first non-NULL
value in a list of
expressions.

COALES‐
CE(‐
value1,
value2,
...)

SELECT
COALESCE(fir‐
st_name,
'Anonymous')
AS displa‐
y_name FROM
users;

NULLIF()
Function

The NULLIF()
function returns
NULL if the two
specified expres‐
sions are equal;
otherwise, it returns
the first expression.

NULLIF‐
(expre‐
ssion1,
expres‐
sion2)

SELECT
NULLIF(di‐
vidend, 0) AS
result FROM
calculations;

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 5 of 7.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

SubqueriesSubqueries

Subquery Example

A subquery, also known as a nested
query or inner query, is a query
nested within another SQL
statement. It allows you to use the
result of one query as a part of
another query.

SELECT column_name
FROM table_name WHERE
column_name OPERATOR
(SELECT column_name
FROM table_name WHERE
condition);

Single-Row Subquery: Returns only
one row of results.

SELECT name FROM
employees WHERE employ‐
ee_id = (SELECT manager_id
FROM departments WHERE
department_id = 100);

Multiple-Row Subquery: Returns
multiple rows of results.

SELECT product_name
FROM products WHERE
category_id IN (SELECT
category_id FROM categories
WHERE category_name =
'Electronics');

Inline View Subquery: Creates a
temporary table within a query.

SELECT * FROM (SELECT
employee_id, first_name,
last_name FROM employees)
AS emp_info WHERE
emp_info.employee_id > 100;

Correlated Subquery: References
one or more columns in the outer
query.

SELECT product_name
FROM products p WHERE
p.unit_price > (SELECT
AVG(unit_price) FROM
products WHERE category_id
= p.category_id);

Common Table Expressions (CTE)Common Table Expressions (CTE)

Explan
ation

Common Table Expressions (CTEs) provide a way to
define temporary result sets that can be referenced within
a single SELECT, INSERT, UPDATE, or DELETE
statement. They enhance the readability and maintainability
of complex queries.

Syntax WITH cte_name (column1, column2, ...) AS (-- CTE query
SELECT ... FROM ... WHERE ...) -- Main query using the
CTE SELECT ... FROM cte_name;

Common Table Expressions (CTE) (cont)Common Table Expressions (CTE) (cont)

Example -- Define a CTE to get the top 5 customers with the
highest total orders WITH top_customers AS (SELECT
customer_id, SUM(order_total) AS total_spent FROM
orders GROUP BY customer_id ORDER BY total_spent
DESC LIMIT 5) -- Use the CTE to get detailed inform‐
ation about the top customers SELECT c.customer_id,
c.customer_name, tc.total_spent FROM customers c
JOIN top_customers tc ON c.customer_id = tc.custom‐
er_id;

ViewsViews

Explan‐
ation

Views in MySQL are virtual tables created by executing a
SELECT query and are stored in the database. They
allow users to simplify complex queries, restrict access to
certain columns, and provide a layer of abstraction over
the underlying tables.

Syntax
to
Create
Views

CREATE VIEW view_name AS SELECT column1,
column2, ... FROM table_name WHERE condition;

Example
to
Create
Views

CREATE VIEW customer_contacts AS SELECT custom‐
er_id, first_name, last_name, email FROM customers
WHERE subscription_status = 'active';

Syntax
to Drop
Views

DROP VIEW view_name;

Example
to Drop
Views

DROP VIEW customer_contacts;

Syntax
to
Update
View

CREATE OR REPLACE VIEW view_name AS SELECT
new_column1, new_column2, ... FROM new_table
WHERE new_condition;

Example
to
Update
View

CREATE OR REPLACE VIEW active_customers AS
SELECT customer_id, first_name, last_name, email
FROM customers WHERE subscription_status = 'active';

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 6 of 7.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

MySQL Concepts Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42813/

Views (cont)Views (cont)

Syntax to Retrieve Data SELECT * FROM view_name;

Example to Retrieve Data SELECT * FROM customer_contacts;

TriggerTrigger

Introduction A trigger is a database object that automatically
performs an action in response to certain events on a
particular table.

Syntax CREATE TRIGGER trigger_name {BEFORE |
AFTER} {INSERT | UPDATE | DELETE} ON
table_name FOR EACH ROW trigger_body

trigge‐
r_name

Name of the trigger.

BEFORE |
AFTER

Specifies when the trigger should be fired, before or
after the event.

INSERT |
UPDATE |
DELETE

Specifies the event that triggers the action.

table_name Name of the table on which the trigger operates.

FOR EACH
ROW

Indicates that the trigger will be fired for each row
affected by the triggering event.

trigge‐
r_body

Actions to be performed when the trigger is fired.

Example CREATE TRIGGER audit_trigger AFTER INSERT ON
employees FOR EACH ROW BEGIN INSERT INTO
audit_log (event_type, event_time, user_id) VALUES
('INSERT', NOW(), NEW.id); END;

BEFORE
Triggers

Fired before the triggering action occurs. Can be used
to modify data before it is inserted, updated, or
deleted.

AFTER
Triggers

Fired after the triggering action occurs. Can be used
for logging, auditing, or other post-action tasks.

Trigger (cont)Trigger (cont)

Accessing
Data

Use NEW.column_name to access the new value of a
column in an INSERT or UPDATE trigger. Use OLD.co‐
lumn_name to access the old value of a column in an
UPDATE or DELETE trigger.

Dropping
a Trigger

DROP TRIGGER [IF EXISTS] trigger_name;

Performance OptimizationPerformance Optimization

Indexing:

Use Indexes Indexes help in speeding up the data retrieval
process by creating efficient lookup paths.

Choose the
Right Columns

Identify columns frequently used in WHERE,
JOIN, and ORDER BY clauses for indexing.

Avoid Overin‐
dexing

Unnecessary indexes can slow down write
operations and consume disk space.

Regularly
Analyze and
Optimize
Indexes

Monitor index usage and performance regularly.
Use tools like EXPLAIN to analyze query
execution plans.

Query Optimization:

Optimize
Queries

Write efficient queries by avoiding unnecessary
joins, using appropriate WHERE clauses, and
minimizing data retrieval.

Use LIMIT When fetching a large dataset, limit the number of
rows returned to reduce the workload on the
server.

Avoid SELECT Explicitly specify only the required columns in
SELECT statements to reduce data transfer
overhead.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 23rd March, 2024.
Page 7 of 7.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/mysql-concepts
http://www.cheatography.com/arshdeep/
https://readable.com

	MySQL Concepts Cheat Sheet - Page 1
	Operators in MySQL
	Date and Time Functions
	String Functions
	Window Functions

	MySQL Concepts Cheat Sheet - Page 2
	Joins

	MySQL Concepts Cheat Sheet - Page 3
	Stored Procedure

	MySQL Concepts Cheat Sheet - Page 4
	Indexing
	Types of SQL Functions
	Numeric Functions

	MySQL Concepts Cheat Sheet - Page 5
	Control Flow Functions
	Aggregate Functions

	MySQL Concepts Cheat Sheet - Page 6
	Subqueries
	Views
	Common Table Expressions (CTE)

	MySQL Concepts Cheat Sheet - Page 7
	Trigger
	Performance Optimization

