
Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Line PlotsLine Plots

Line
Plots

Line plots are fundamental in Matplotlib and are used to
visualize data points connected by straight lines. They
are particularly useful for displaying trends over time or
any ordered data.

Basic
Syntax

import matplotlib.pyplot as plt
plt.plot(x, y)
plt.show()

Plotting
Lines

The plot() function is used to create line plots. Pass
arrays of data for the x-axis and y-axis.

Custom‐
izing
Lines

You can customize the appearance of lines using
parameters like color, linestyle, and marker.

Multiple
Lines

Plot multiple lines on the same plot by calling plot()
multiple times before show().

Adding
Labels

Always add labels to the axes using xlabel() and ylabel()
to provide context to the plotted data.

Example import matplotlib.pyplot as plt

Sample
data

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

Plotting
the line

plt.plot(x, y, color='blue',
linestyle='-', marker='o',
label='Line 1')

Adding
labels
and title

plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Example Line Plot')

Adding
legend

plt.legend()

Display
plot

plt.show()

Bar PlotsBar Plots

Bar Plots Bar plots are used to represent categorical data with
rectangular bars. They are commonly used to compare
the quantities of different categories. Matplotlib provides
a simple way to create bar plots using the bar()
function.

Basic Bar
Plot:

import matplotlib.pyplot as plt
categories = ['A', 'B', 'C', 'D']
values = [25, 30, 35, 40]
plt.bar(categories, values)
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Basic Bar Plot')
plt.show()

Custom‐
izing Bar
Plots

You can customize bar plots by changing colors,
adding labels, adjusting bar width, and more using
various parameters of the bar() function.

Grouped
Bar Plots

To compare data across multiple categories, you can
create grouped bar plots by plotting multiple sets of bars
side by side.

Horizontal
Bar Plots

Matplotlib also supports horizontal bar plots using the
barh() function. These are useful when you have long
category names or want to emphasize certain catego‐
ries.

Stacked
Bar Plots

Stacked bar plots allow you to represent parts of the
data as segments of each bar. This is useful for
showing the composition of each category.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 1 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Handling Missing DataHandling Missing Data

Check
for
Missing
Data

Before plotting, check your data for any missing values.
This can be done using functions like isnull() or isna()
from libraries like Pandas or NumPy.

Drop or
Impute
Missing
Values

Depending on your analysis and the nature of missing
data, you may choose to either drop the missing values
using dropna() or impute them using techniques like
mean, median, or interpolation.

Masking Matplotlib supports masking, allowing you to ignore
specific data points when plotting. You can create a
mask array to filter out missing values from your dataset.

Handle
Missing
Data in
Specific
Plot
Types

Different plot types may have different strategies for
handling missing data. For example, in a line plot, you
might interpolate missing values, while in a bar plot, you
might choose to leave gaps or replace missing values
with zeros.

Commun
icate
Missing
Data

Make sure your plots communicate clearly when data is
missing. You can use annotations or legends to indicate
where data has been removed or imputed.

Pie ChartsPie Charts

Pie ChartsPie Charts

Pie charts are circular statistical graphics that are divided into slices to illustrate
numerical proportions. Each slice represents a proportionate part of the whole
data set.

UsageUsage

Ideal for displaying the relative sizes of various categories within a dataset.

Best suited for representing data with fewer categories (around 6 or fewer) to
maintain clarity.

Creating a Pie ChartCreating a Pie Chart

import matplotlib.pyplot as plt
labels = ['Category 1', 'Category 2', 'Category 3']
sizes = [30, 40, 30]
Proportions of each category
plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.axis('equal')
Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()

CustomizationCustomization

Colors: You can specify custom colors for each slice.

Exploding Slices: Emphasize a particular slice by pulling it out of the pie.

Labels: Adjust label font size, color, and position.

Shadow: Add a shadow effect for better visual appeal.

Legend: Include a legend to clarify the meaning of each slice.

ExampleExample

Customizing a Pie Chart
colors = ['gold', 'yellowgreen',
 'lightcoral']
explode = (0, 0.1, 0)
Explode the 2nd slice (Category 2)
plt.pie(sizes, explode=explode,
labels=labels, colors=colors,
autopct='%1.1f%%', shadow=True)
plt.axis('equal')
plt.show()

ConsiderationsConsiderations

Avoid using pie charts for datasets with many categories, as slices become small
and difficult to interpret.

Ensure that the proportions of the data are clear and easy to understand.

Double-check labels and legend to avoid confusion.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 2 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Customizing PlotsCustomizing Plots

Custom‐
izing Plots

You can customize the color, linestyle, and marker
style of lines and markers using parameters like color,
linestyle, and marker.

Line and
Marker
Properties

Adjust the width of lines with the linewidth parameter
and the size of markers with markersize.

Axes Limits Set the limits of the x and y axes using xlim and ylim
to focus on specific regions of your data.

Axis Labels
and Titles

Add descriptive labels to the x and y axes using xlabel
and ylabel, and give your plot a title with title.

Grids Display grid lines on your plot using grid.

Legends Add a legend to your plot to label different elements
using legend.

Ticks Customize the appearance and positioning of ticks on
the axes using functions like xticks and yticks.

Text
Annotations

Annotate specific points on your plot with text using
text or annotate.

Figure Size Adjust the size of your figure using the figsize
parameter when creating a figure.

Background
Color

Change the background color of your plot using
set_facecolor.

Introduction to MatplotlibIntroduction to Matplotlib

Matplotlib is a powerful Python library widely used for creating static,
interactive, and publication-quality visualizations. It provides a
flexible and comprehensive set of plotting tools for generating a wide
range of plots, from simple line charts to complex 3D plots.

Key Features:Key Features:

Simple Interface: Matplotlib offers a straightforward interface for
creating plots with just a few lines of code.

Flexibility: Users have fine-grained control over the appearance and
layout of their plots, allowing for customization according to specific
needs.

Wide Range of Plot Types: Matplotlib supports various plot types,
including line plots, scatter plots, bar plots, histograms, pie charts,
and more.

Integration with NumPy: Matplotlib seamlessly integrates with
NumPy, making it easy to visualize data stored in NumPy arrays.

Publication-Quality Output: Matplotlib produces high-quality, public‐
ation-ready plots suitable for both digital and print media.

Extensibility: Users can extend Matplotlib's functionality through its
object-oriented interface, enabling the creation of custom plot types
and enhancements.

import matplotlib.pyplot as plt
Sample data
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
Create a line plot
plt.plot(x, y)
plt.xlabel('X-axis label')
plt.ylabel('Y-axis label')
plt.title('Simple Line Plot')
plt.show()

Annotations and TextAnnotations and Text

Adding
Text

plt.text(x, y, 'Your Text Here', fontsize=12, color='blu
e')

Annota‐
tions

plt.annotate('Important Point',
xy=(x, y), xytext=(x_text, y_text),
arrowprops=dict(facecolor='black',
arrowstyle='->'), fontsize=10)

Text
Properties

Matplotlib allows you to customize text properties such as font size, color, and
style. Use keyword arguments like fontsize, color, fontweight, etc., to modify text
appearance.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 3 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Annotations and Text (cont)Annotations and Text (cont)

Latex Support plt.text(x, y,
r'$\alpha > \beta$', fontsize=12)

Multiline Text plt.text(x, y, 'Line 1\nLine 2',
fontsize=12)

Rotation plt.text(x, y, 'Rotated Text',
fontsize=12, rotation=45)

Advanced Plotting TechniquesAdvanced Plotting Techniques

Multiple
Axes and
Figures

Use plt.subplots() to create multiple plots in a single
figure. Control layout with plt.subplot() or plt.GridS‐
pec().

Custom‐
izing Line
Styles

Change line styles with linestyle parameter (e.g., '-', '--
', '-.', ':'). Adjust line width using linewidth.

Color
Mapping
and
Colormaps

Utilize colormaps for visualizing data with color
gradients. Apply colormaps using the cmap parameter
in functions like plt.scatter() or plt.imshow().

Error Bars
and
Confidence
Intervals

Represent uncertainties in data with error bars. Add
error bars using plt.errorbar() or ax.errorbar().

Layering
Plots

Overlay plots to visualize multiple datasets in one
figure. Use plt.plot() or ax.plot() multiple times with
different data.

Plotting
with Logari‐
thmic Scale

Use logarithmic scales for axes with plt.xscale() and
plt.yscale(). Helpful for visualizing data that spans
several orders of magnitude.

Advanced Plotting Techniques (cont)Advanced Plotting Techniques (cont)

Polar Plots Create polar plots with plt.subplot() and projection='‐
polar'. Useful for visualizing cyclic data, such as
compass directions or periodic phenomena.

3D Plotting Visualize 3D data with mpl_toolkits.mplot3d. Create 3D
scatter plots, surface plots, and more.

Animations Animate plots using FuncAnimation. Ideal for
displaying dynamic data or simulations.

Stream‐
plots

Visualize vector fields with streamlines using plt.strea‐
mplot(). Useful for displaying fluid flow or electroma‐
gnetic fields.

Interactive PlottingInteractive Plotting

Zooming
and
Panning

Users can zoom in on specific regions of the plot to
examine details more closely or pan across the plot to
explore different sections.

Data
Selection

Interactive plots allow users to select and highlight
specific data points or regions of interest within the plot.

Intera‐
ctive
Widgets

Matplotlib provides widgets such as sliders, buttons, and
text input boxes that enable users to dynamically adjust
plot parameters, such as plot range, line styles, or data
filters.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 4 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Interactive Plotting (cont)Interactive Plotting (cont)

Dynamic
Updates

Plots can update dynamically in response to user intera‐
ctions or changes in the underlying data, providing real-
time feedback and visualization.

Custom
Intera‐
ctivity

Users can define custom interactive behavior using
Matplotlib's event handling system, allowing for complex
interactions tailored to specific use cases.

Adding Labels and TitlesAdding Labels and Titles

Adding Axis Labels plt.xlabel("X-axis Label")
plt.ylabel("Y-axis Label")

Adding Titles plt.title("Plot Title")

Customizing Labels
and Titles

plt.xlabel("X-axis Label",
fontsize=12, fontweight='bold
',
color='blue')
plt.title("Plot Title",
fontsize=14, fontweight='bold
',
color='green')

Mathematical Expres‐
sions in Labels

plt.xlabel(r"α")
plt.title(r"β")

3D Plotting3D Plotting

To create a
3D plot in
Matplotlib,
you typically
start by
importing
the
necessary
modules:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axe
s3D

Then, you
can create a
3D axes
object using
plt.figure()
and passing
the projec‐
tion='3d'
argument:

fig = plt.figure()
ax = fig.add_subplot(111,
projection='3d')

3D Plotting (cont)3D Plotting (cont)

Once you have
your 3D axes
object, you can plot
various types of 3D
data using methods
such as plot(),
scatter(), bar3d(),
etc. For example,
to create a simple
3D scatter plot:

ax.scatter(x_data, y_data, z_da
ta)

You can also
customize the
appearance of your
3D plot by setting
properties such as
labels, titles, axis
limits, colors, and
more:

ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
ax.set_title('3D Scatter Plot')
Set axis limits
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_zlim(z_min, z_max)
Customize colors
ax.scatter(x_data, y_data,
z_data, c=color_data,
cmap='viridis')

Plotting ImagesPlotting Images

Example import matplotlib.pyplot as plt
import numpy as np

Create a
random image

image_data = np.random.random((
100, 100))

Plot the image plt.imshow(image_data, cmap='gr
ay')
plt.axis('off')
Turn off axis
plt.show()

Working with Different Plot StylesWorking with Different Plot Styles

Default
Style

Matplotlib's default style is functional and simple. Suitable
for most basic plots without any specific styling requir‐
ements.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 5 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Working with Different Plot Styles (cont)Working with Different Plot Styles (cont)

FiveThirt‐
yEight Style

Mimics the style used by the FiveThirtyEight website.
Bold colors and thicker lines for emphasis.

ggplot Style Emulates the style of plots generated by the ggplot
library in R. Clean and modern appearance with gray
backgrounds.

Seaborn
Style

Similar to the default Seaborn plotting style. Features
muted colors and grid backgrounds.

Dark
Background
Styles

Various styles with dark backgrounds, suitable for
presentations or dashboards. Examples include
'dark_background' and 'Solarize_Light2'.

XKCD Style Creates plots with a hand-drawn, cartoonish appear‐
ance. Adds a playful touch to visualizations.

Example import matplotlib.pyplot as plt
plt.style.use('ggplot')

Saving PlotsSaving Plots

Using savefig()
Function

import matplotlib.pyplot as pl
t
Plotting code here
plt.savefig('plot.png')
Save the plot as 'plot.png'

Customizing Output plt.savefig('plot.png', dpi=
300,
bbox_inches='tight',
transparent=True)

Supported Formats plt.savefig('plot.pdf')
Save as PDF
plt.savefig('plot.svg')
Save as SVG

Interactive Saving plt.savefig('plot.png',
bbox_inches='tight',
pad_inches=0)

LegendsLegends

For example: import matplotlib.pyplot as pl
t

Plotting data plt.plot(x1, y1, label='Line 1'
)
plt.plot(x2, y2, label='Line 2')

Adding legend plt.legend()
plt.show()

You can customize
the appearance of
the legend by
specifying its
location, adjusting
the font size,
changing the
background color,
and more.

plt.legend(loc='upper right',

fontsize='large', shadow=True,
facecolor='lightgray')

SubplotsSubplots

Subplots Subplots allow you to display multiple plots within the same figure. This is
useful for comparing different datasets or visualizing related information.

Creating
Subplots

import matplotlib.pyplot as plt
Create a figure with 2 rows and 2 columns of subplots
fig, axs = plt.subplots(2, 2)

Accessing
Subplot
Axes

ax1 = axs[0, 0]
Top-left subplot
ax2 = axs[0, 1]
Top-right subplot
ax3 = axs[1, 0]
Bottom-left subplot
ax4 = axs[1, 1]
Bottom-right subplot

Plotting
on
Subplots

ax1.plot(x1, y1)
ax2.scatter(x2, y2)
ax3.bar(x3, y3)
ax4.hist(data)

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 6 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Subplots (cont)Subplots (cont)

Custom‐
izing
Subplots

ax1.set_title('Plot 1')
ax2.set_xlabel('X Label')
ax3.set_ylabel('Y Label')

Adjusting
Layout

plt.subplots_adjust(hspace=0.5, wspace
=0.5)
Adjust horizontal and vertical spacing

Conclusion Subplots are a powerful feature in Matplotlib for creating
multi-panel figures, allowing you to efficiently visualize and
compare multiple datasets within the same plot.

HistogramsHistograms

HistogramsHistograms

Histograms are graphical representations of the distribution of data.
They display the frequency or probability of occurrence of different
values in a dataset, typically depicted as bars. Histograms are
commonly used to visualize the distribution of continuous data.

Creating a HistogramCreating a Histogram

import matplotlib.pyplot as plt
data = [1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7,
8, 8, 8]
plt.hist(data, bins=5, color='skyblue',
edgecolor='black')
plt.xlabel('Values')
plt.ylabel('Frequency')
plt.title('Histogram of Data')
plt.show()

ParametersParameters

data: The input data to be plotted.

bins: Number of bins or intervals for the histogram.

color: Color of the bars.

edgecolor: Color of the edges of the bars.

CustomizationsCustomizations

Adjust the number of bins to control the granularity of the histogram.

Change colors, edge colors, and bar width for aesthetic appeal.

Add labels and titles for clarity.

InterpretationInterpretation

Histograms help in understanding the distribution of data, including
its central tendency, spread, and shape.

They are useful for identifying patterns, outliers, and data skewness.

Histograms (cont)Histograms (cont)

Histograms are often used in exploratory data analysis and statistical
analysis.

Scatter PlotsScatter Plots

Scatter
Plot

A Scatter Plot is a type of plot that displays values for
two variables as points on a Cartesian plane. Each
point represents an observation in the dataset, with
the x-coordinate corresponding to one variable and the
y-coordinate corresponding to the other variable.

Visualizing
Relati‐
onships

Scatter plots are particularly useful for visualizing
relationships or patterns between two variables. They
can reveal trends, clusters, correlations, or outliers in
the data.

Marker
Style and
Color

Points in a scatter plot can be customized with
different marker styles, sizes, and colors to enhance
visualization and highlight specific data points or
groups.

Adding
Third
Dimension

Sometimes, scatter plots can incorporate additional
dimensions by mapping variables to marker size, color
intensity, or shape.

Regression
Lines

In some cases, regression lines or curves can be
added to scatter plots to indicate the overall trend or
relationship between the variables.

Example import matplotlib.pyplot as plt

Sample
data

x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 7 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

Matplotlib Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/43037/

Scatter Plots (cont)Scatter Plots (cont)

Create
a
scatter
plot

plt.scatter(x, y, color='blue',
marker='o', s=100)

Adding
labels
and title

plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.title('Scatter Plot Example')

Show
plot

plt.show()

Data
Scaling

Ensure that both variables are on a similar scale to avoid
distortion in the visualization.

Data
Explor‐
ation

Use scatter plots as an initial step in data exploration to
identify potential patterns or relationships before further
analysis.

Interp‐
retation

Interpretation of scatter plots should consider the overall
distribution of points, any evident trends or clusters, and
the context of the data.

Basic PlottingBasic Plotting

Importing Matplotlib import matplotlib.pyplot as
plt

Creating a Plot plt.plot(x_values, y_values)

Displaying the Plot plt.show()

Adding Labels and Title plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.title('Plot Title')

Customizing Plot
Appearance

plt.plot(x_values, y_values,

color='red', linestyle='--',
marker='o')

Adding Gridlines plt.grid(True)

Saving the Plot plt.savefig('plot.png')

Plotting with DatesPlotting with Dates

Datetime
Objects

Matplotlib accepts datetime objects for plotting dates.
You can create datetime objects using Python's
datetime module.

Date
Formatting

You can customize the appearance of dates on the
plot using formatting strings. Matplotlib's DateFo‐
rmatter class enables you to specify the format of date
labels.

Plotting
Time
Series

Matplotlib provides various plotting functions like plot(),
scatter(), and bar() that accept datetime objects as
input for the x-axis.

Custom‐
izing Date
Axes

You can customize the appearance of the date axis,
including the range, tick frequency, and formatting.
Matplotlib's DateLocator class helps in configuring date
ticks on the axis.

Handling
Time
Zones

Matplotlib supports handling time zones in date
plotting. You can convert datetime objects to different
time zones using Python libraries like pytz and then
plot them accordingly.

Plotting
Date
Ranges

Matplotlib allows you to plot specific date ranges by
filtering your dataset based on date values before
passing them to the plotting functions.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 14th April, 2024.
Page 8 of 8.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/matplotlib
http://www.cheatography.com/arshdeep/
https://apollopad.com

	Matplotlib Cheat Sheet - Page 1
	Line Plots
	Bar Plots

	Matplotlib Cheat Sheet - Page 2
	Handling Missing Data
	Pie Charts

	Matplotlib Cheat Sheet - Page 3
	Customizing Plots
	Introduction to Matplotlib
	Annotations and Text

	Matplotlib Cheat Sheet - Page 4
	Advanced Plotting Techniques
	Interactive Plotting

	Matplotlib Cheat Sheet - Page 5
	Adding Labels and Titles
	Plotting Images
	3D Plotting
	Working with Different Plot Styles

	Matplotlib Cheat Sheet - Page 6
	Legends
	Saving Plots
	Subplots

	Matplotlib Cheat Sheet - Page 7
	Scatter Plots
	Histograms

	Matplotlib Cheat Sheet - Page 8
	Plotting with Dates
	Basic Plotting

