
Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Looping StatementsLooping Statements

For Loop for item in iterable:
 # Code block to be executed for each item

Example for i in range(5):
 print(i)

Output 0
1
2
3
4

While Loop while condition:
 # Code block to be executed as long as condition is True

Example count = 0
 while count < 5:
 print(count)
 count += 1

Output 0
1
2
3
4

break Terminates the loop immediately

continue Skips the rest of the code inside the loop for the current iteration and proceeds to
the next iteration

pass Acts as a placeholder, does nothing

Nested
Loops

for i in range(3):
 for j in range(2):
 print(i, j)

List
Compre‐
hension

[expression for item in iterable]

Dictionary
Compre‐
hension

{key_expression: value_expression for item in iterable}

Generator
Expression

(expression for item in iterable)

Evolution of PythonEvolution of Python

Birth
of
Python
(1989-
1991)

Created by Guido van Rossum, Python emerged in the late
1980s as a successor to the ABC language. Its name was
inspired by Monty Python's Flying Circus, a British sketch
comedy series.

Evolution of Python (cont)Evolution of Python (cont)

Python 1.0
(1994)

Python 1.0 was released with features like lambda,
map, filter, and reduce. Its simplicity and readability
gained attention in the programming community.

Python 2.x
Series
(2000-‐
2008)

Python 2 introduced significant improvements and
became widely adopted. However, this series faced
challenges with compatibility issues when Python 3
was released.

Python 3.x
Series
(2008-pre‐
sent)

Python 3 marked a major overhaul of the language,
aiming to fix inconsistencies and introduce new
features while maintaining backward compatibility.
Despite initial resistance, it eventually gained
widespread acceptance.

Python
Enhanc‐
ement
Proposals
(PEPs)

PEPs serve as the formal mechanisms for proposing
major changes to Python. They facilitate community
discussion and decision-making processes, ensuring
Python's evolution reflects the needs of its users.

Community
and
Ecosystem
Growth

Python's open-source nature has fostered a vibrant
community, contributing to a vast ecosystem of
libraries, frameworks, and tools. This growth has
propelled Python to become one of the most popular
and versatile programming languages worldwide.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 1 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Evolution of Python (cont)Evolution of Python (cont)

Recent
Develo‐
pments

Continual updates and enhancements keep Python
relevant and competitive in the ever-changing
landscape of programming languages. Recent develo‐
pments include optimizations for performance, improv‐
ements in concurrency, and enhancements in data
science and machine learning capabilities.

Future
Directions

Python continues to evolve, with ongoing efforts to
enhance performance, maintainability, and ease of use.
The community-driven development model ensures that
Python remains adaptable to emerging technologies
and evolving programming paradigms.

Rules for IdentifiersRules for Identifiers

Must start with a letter (a-z, A-Z) or underscore (_).

Can be followed by letters, digits (0-9), or underscores.

Python identifiers are case-sensitive.

Cannot be a reserved word or keyword.

Identity OperatorsIdentity Operators

Is: is

Is not: is not

Membership OperatorsMembership Operators

In: in

Not in: not in

Data TypesData Types

Integer (int) Represents whole numbers.

Float (float) Represents floating-point numbers (decimal
numbers).

String (str) Represents sequences of characters enclosed in
quotes (' or ").

Boolean
(bool)

Represents truth values True or False.

List Ordered collection of items, mutable.

Tuple Ordered collection of items, immutable.

Dictionary
(dict)

Collection of key-value pairs, unordered.

Data Types (cont)Data Types (cont)

Set Collection of unique items, unordered.

Data TypesData Types

Integer (int) Represents whole numbers.

Float (float) Represents floating-point numbers (decimal
numbers).

String (str) Represents sequences of characters enclosed in
quotes (' or ").

Boolean
(bool)

Represents truth values True or False.

List Ordered collection of items, mutable.

Tuple Ordered collection of items, immutable.

Dictionary
(dict)

Collection of key-value pairs, unordered.

Set Collection of unique items, unordered.

Features of PythonFeatures of Python

Simple
and
Readable
Syntax

Python's syntax is designed to be simple and readable,
making it easy for beginners to learn and understand.
Its clean and concise syntax reduces the cost of
program maintenance.

Interp‐
reted
Language

Python is an interpreted language, meaning that it does
not need to be compiled before execution. This allows
for rapid development and testing of code.

High-
Level
Language

Python abstracts low-level details like memory
management and provides constructs like objects,
functions, and modules, allowing developers to focus on
solving problems rather than dealing with system-level
concerns.

Dynamic
Typing

Python is dynamically typed, meaning you don't need to
declare the data type of variables explicitly. This makes
Python code shorter and more flexible.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 2 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Features of Python (cont)Features of Python (cont)

Object-Or‐
iented

Python supports object-oriented programming (OOP)
paradigms, allowing developers to create reusable and
modular code by defining classes and objects.

Extensive
Standard
Library

Python comes with a vast standard library that
provides modules and functions for a wide range of
tasks, from file I/O to networking to web development.
This reduces the need for third-party libraries for many
common tasks.

Cross-Pla‐
tform
Compat‐
ibility

Python code can run on various platforms such as
Windows, macOS, and Linux without modification,
making it highly portable.

Dynamic
Memory
Allocation

Python uses dynamic memory allocation and garbage
collection, automatically managing memory usage and
freeing up memory when objects are no longer
needed.

Strong
Community
Support

Python has a large and active community of
developers who contribute to its growth by creating
libraries, frameworks, and tools. This vibrant
community ensures that there are resources and
support available for developers at all levels.

Integration
Capabi‐
lities

Python can easily integrate with other languages like
C/C++, allowing developers to leverage existing code
and libraries written in other languages.

Features of Python (cont)Features of Python (cont)

Ease of
Learning
and
Deployment

Python's simplicity and readability make it an
excellent choice for beginners, and its extensive
documentation and community support make it easy
to learn and deploy for both small-scale and large-‐
scale projects.

Scalability While initially known for its simplicity and ease of use,
Python is also scalable and can handle large-scale
projects effectively. With frameworks like Django and
Flask for web development, and libraries like NumPy
and Pandas for data science, Python is suitable for a
wide range of applications, from small scripts to
enterprise-level systems.

Comparison OperatorsComparison Operators

Equal to: ==

Not equal to: !=

Greater than: >

Less than: <

Greater than or equal to: >=

Less than or equal to: <=

Logical OperatorsLogical Operators

Logical AND: and

Logical OR: or

Logical NOT: not

FunctionsFunctions

Defining a
Function

def function_name(parameters):
 """docstring"""
 # code block
 return value

Calling a
Function

result = function_name(arguments)

Positional
Parameters

def greet(name):
 print("Hello,", name)
 greet("Alice") # Output: Hello, Al
ice

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 3 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Functions (cont)Functions (cont)

Keyword
Parameters

def greet(name, greeting):
 print(greeting, name)
 greet(name="Bob", greeting="Hi")
 # Output: Hi Bob

Default
Parameters

def greet(name, greeting="Hello"):
 print(greeting, name)
 greet("Alice")
 # Output: Hello Alice

*args (Non-
keyword
Arguments)

def add(*args):
 return sum(args)
 add(1, 2, 3) # Output: 6

**kwargs
(Keyword
Arguments)

def details(**kwargs):
 print(kwargs)
 details(name="Alice", age=30)
Output: {'name': 'Alice', 'age': 30}

Docstrings def function_name(parameters):
 """Description of the functi
on"""
 # code block
 return value
 print(function_name.__doc__)

Return
Statement

def add(a, b):
return a + b
result = add(3, 5) # Output: 8

Local Scope Variables defined inside a function have local scope.

Global Scope Variables defined outside functions have global
scope.

Lambda
Functions

double = lambda x: x * 2
 print(double(5)) # Output: 10

Recursive
Functions

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)
 print(factorial(5)) # Output: 120

Exception HandlingException Handling

What is an
Exception?

An exception is an error that occurs during the execution of a
program. It disrupts the normal flow of the program's instru‐
ctions.

try-except
block

try:
 # Code that may raise an exception
except ExceptionType:
 # Code to handle the exception

try-except-
else block

try:
 # Code that may raise an exception
except ExceptionType:
 # Code to handle the exception
else:
 # Code to execute if no exception occurs

try-except-
finally
block

try:
 # Code that may raise an exception
except ExceptionType:
 # Code to handle the exception
finally:
 # Code that will execute no matter what

Built-in
Exceptions

Examples include TypeError, ValueError, ZeroDivisionError,
etc.

Raising
Exceptions

raise ExceptionType("Error message")

Custom
Exceptions

class CustomError(Exception):
 def __init__(self, message):
 self.message = message

Handling
Multiple
Exceptions

try:
 # Code
except (ExceptionType1, ExceptionType2) a
s e:
 # Handle both exceptions

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 4 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

File HandlingFile Handling

Opening a
File

file = open("filename.txt", "r")

Closing a
File

file.close()

Reading
from a File

content = file.read()

Writing to
a File

file.write("Hello, world!")

Appending
to a File

file = open("filename.txt", "a")
file.write("New content")

Iterating
Over Lines

for line in file:
print(line)

Checking
File
Existence

import os.path
if os.path.exists("filename.txt"):
print("File exists")

File
Handling
with
Context
Managers

with open("filename.txt", "r") as file:
 content = file.read()
 # file automatically closed after exiting the 'with' block

Arithmetic OperatorsArithmetic Operators

Addition: +

Subtraction: -

Multiplication: *

Division: /

Modulus: %

Exponentiation: **

Common FunctionsCommon Functions

print() Output text or variables to the console.

input() Receive user input from the console.

len() Calculate the length of a sequence (e.g., string, list, tuple).

range() Generate a sequence of numbers within a specified range.

type() Determine the type of a variable or value.

int() Convert a value to an integer.

float() Convert a value to a floating-point number.

str() Convert a value to a string.

list() Convert a sequence (e.g., string, tuple) to a list.

tuple() Convert a sequence (e.g., string, list) to a tuple.

Common Functions (cont)Common Functions (cont)

dict() Create a dictionary or convert a sequence of key-value
pairs into a dictionary.

sorted() Return a new sorted list from the elements of an iterable.

max() Return the largest item in an iterable or the largest of two
or more arguments.

min() Return the smallest item in an iterable or the smallest of
two or more arguments.

sum() Return the sum of all elements in an iterable.

abs() Return the absolute value of a number.

round() Round a floating-point number to a specified precision.

zip() Combine multiple iterables into tuples.

enumer‐
ate()

Return an enumerate object, which yields pairs of index
and value.

map() Apply a function to every item in an iterable.

filter() Construct an iterator from those elements of an iterable
for which a function returns true.

reduce() Apply a rolling computation to sequential pairs of values
in an iterable.

any() Return True if any element of the iterable is true.

all() Return True if all elements of the iterable are true.

dir() Return a list of valid attributes for the specified object.

help() Access Python's built-in help system.

Conditional StatementsConditional Statements

If
Statement

if condition:
 # Code to execute if condition is True

If-else
Statement

if condition:
 # Code to execute if condition is True
 else:
 # Code to execute if condition is False

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 5 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Conditional Statements (cont)Conditional Statements (cont)

If-elif-else
Statement

if condition1:
 # Code to execute if condition1 is True
 elif condition2:
 # Code to execute if condition2 is True
 else:
 # Code to execute if all conditions are False

Nested If
Statements

if condition1:
 if condition2:
 # Code to execute if both condition1 and condition2 are True

Ternary
Conditional
Operator

result = true_value if condition else false_value

Short Circuit
Evaluation

Example using 'and'
 if x > 0 and y < 10:
 # Code here

 # Example using 'or'
 if a == 0 or b == 0:
 # Code here

Membership
Test

if item in list:
 # Code to execute if item is present in list

Identity Test if x is y:
 # Code to execute if x and y refer to the same object

Bitwise OperatorsBitwise Operators

Bitwise AND: &

Bitwise OR: |

Bitwise XOR: ^

Bitwise NOT: ~

Left shift: <<

Right shift: >>

Assignment OperatorsAssignment Operators

Assign value: =

Add and assign: +=

Subtract and assign: -=

Multiply and assign: *=

Divide and assign: /=

Modulus and assign: %=

Exponentiation and assign: **=

VariablesVariables

Variable Variables are used to store data values.

Variable
Declaration

No explicit declaration needed. Just assign a value to
a name.

Variable
Naming

Follow naming conventions. Use descriptive names,
avoid reserved words, and start with a letter or
underscore.

Data Types Variables can hold various data types such as
integers, floats, strings, lists, tuples, dictionaries, etc.

Dynamic
Typing

Python is dynamically typed, meaning you can
reassign variables to different data types.

Example # Variable assignment
x = 10
name = "Alice"
is_student = True

Variable
Reassi‐
gnment:

x = 10 print(x) # Output: 10
x = "Hello"
print(x) # Output: Hello

Multiple
Assignment

a, b, c = 1, 2, 3

Constants PI = 3.14159

Best Practices for IdentifiersBest Practices for Identifiers

Use descriptive names for better code readability.

Avoid using single letters or abbreviations that may be ambiguous.

Follow naming conventions (e.g., snake_case for variables and
functions, PascalCase for class names).

TokensTokens

Identifiers These are names given to entities like variables,
functions, classes, etc. They must start with a letter or
underscore and can be followed by letters, digits, or
underscores.

Keywords Python has reserved words that have special meanings
and cannot be used as identifiers. Examples include if,
else, for, while, def, class, etc.

Literals These are the raw data values used in a program.
Common types of literals in Python include integers,
floating-point numbers, strings, and boolean values.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 6 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Tokens (cont)Tokens (cont)

Operators Operators are symbols used to perform operations on
operands. Python supports various types of operators
such as arithmetic operators (+, -, *, /), assignment
operators (=, +=, -=), comparison operators (==, !=, <,
>), logical operators (and, or, not), etc.

Delimiters Delimiters are characters used to define the structure
of a program. Examples include parentheses (), braces
{}, square brackets [], commas ,, colons :, etc.

Comments Comments are used to annotate code and are ignored
by the Python interpreter. They start with the # symbol
for single-line comments or are enclosed within triple
quotes """ for multi-line comments.

Applications of PythonApplications of Python

Web Develo‐
pment

Python's frameworks like Django and Flask are
widely used for building web applications due to
their simplicity and scalability.

Data Science Python's libraries like NumPy, Pandas, and
Matplotlib make it a preferred choice for data
analysis, visualization, and machine learning tasks.

Artificial Intell‐
igence and
Machine
Learning

Python provides extensive libraries such as Tensor‐
Flow, Keras, and PyTorch, making it popular for AI
and ML projects.

Automation
and Scripting

Python's ease of use and readability make it ideal
for automating repetitive tasks and scripting.

Game
Development

Python's simplicity and versatility are leveraged in
game development frameworks like Pygame.

Applications of Python (cont)Applications of Python (cont)

Desktop
GUI
Applic‐
ations

Libraries such as Tkinter and PyQt allow developers to
create cross-platform desktop GUI applications easily.

Scientific
Computing

Python is widely used in scientific computing for
simulations, mathematical modeling, and data analysis
in fields such as physics, engineering, and biology.

Finance
and
Trading

Python is extensively used in finance for tasks like
algorithmic trading, risk management, and quantitative
analysis due to its robust libraries and ease of integr‐
ation.

Education Python's readability and simplicity make it an excellent
choice for teaching programming to beginners, as well
as for educational software development.

Networking Python's libraries like socket and Twisted are used for
network programming, making it a popular choice for
developing network-related applications.

Paradigms of PythonParadigms of Python

Imperative
Progra‐
mming

Focuses on describing how a program operates
through a sequence of statements. Python's imperative
style involves defining functions, loops, and conditional
statements to control program flow.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 7 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Paradigms of Python (cont)Paradigms of Python (cont)

Object-Or‐
iented
Progra‐
mming
(OOP)

Emphasizes the creation of objects which encapsulate
data and behavior. Python supports classes, inheri‐
tance, polymorphism, and encapsulation, enabling
developers to structure their code in a modular and
reusable manner.

Functional
Progra‐
mming

Treats computation as the evaluation of mathematical
functions. Python supports functional programming
concepts such as higher-order functions, lambda
expressions, and immutable data structures. Functional
programming encourages writing pure functions
without side effects, enhancing code readability and
testability.

Procedural
Progra‐
mming

Involves organizing code into procedures or functions
to perform tasks. Python supports procedural progra‐
mming by allowing the creation of functions and
modules to break down tasks into smaller,
manageable units.

Aspect-Or‐
iented
Progra‐
mming
(AOP)

Focuses on separating cross-cutting concerns such as
logging, authentication, and error handling from the
main program logic. While Python doesn't provide built-
in AOP support, libraries like AspectLib and
Pythoscope offer AOP capabilities through decorators
and metaprogramming.

ModulesModules

What are
Modules?

Modules in Python are files containing Python
code.
They can define functions, classes, and variables.
Python code in one module can be reused in
another module.

Modules (cont)Modules (cont)

Why Use
Modules?

Encapsulation: Keep related code together for
better organization.
Reusability: Write code once and reuse it in
multiple places.
Namespacing: Avoid naming conflicts by using
module namespaces.

Importing Modules

Use the import
keyword to
import a
module.

import module_name

Use from
keyword to
import specific
items from a
module.

from module_name import item1, item
2

Standard
Library Modules

Python comes with a rich standard library of
modules for various tasks.
Examples: math, os, datetime, random, json, csv,
etc.

Third-Party
Modules

Extensive collection of third-party modules
available via the Python Package Index (PyPI).

Install third-party
modules using
pip, the Python
package
manager.

pip install module_name

Creating
Modules

To create your own module, simply save Python
code in a .py file.
Functions, classes, and variables defined in the
file become accessible when the module is
imported.

Special
Attributes

__name__: Name of the module. When a module
is run as a script, its __name__ is set to
"__main__".
__file__: Path to the module's source file.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 8 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

Introduction to Python Cheat Sheet
by Arshdeep via cheatography.com/201979/cs/42848/

Modules (cont)Modules (cont)

Best Practices Use meaningful names for modules.
Document your modules using docstrings.
Avoid polluting the global namespace by
importing only what you need.
Follow PEP 8 guidelines for code style.

Importing standard
library module:

import math
print(math.pi)

Importing specific
items

from math import pi, sqrt
print(pi)

Object Oriented ProgrammingObject Oriented Programming

Object-
Oriented
Progra‐
mming
(OOP)
in
Python

Object-Oriented Programming (OOP) is a programming
paradigm that revolves around the concept of objects,
which can contain data (attributes) and code (methods).
Python supports OOP principles, making it versatile and
powerful for building complex systems.

Class A class is a blueprint for creating objects.

Object An object is an instance of a class, representing a specific
entity in your program.

Encaps‐
ulation

Encapsulation refers to bundling data (attributes) and
methods that operate on the data within a single unit, i.e.,
a class.
It helps in data hiding and abstraction, enabling better
control over data access and modification.

Object Oriented Programming (cont)Object Oriented Programming (cont)

Inheri‐
tance

Inheritance allows a class (subclass/child class) to
inherit attributes and methods from another class
(superclass/parent class).
It promotes code reuse and facilitates building hierar‐
chical relationships between classes.

Polymo‐
rphism

Polymorphism enables a single interface to be used for
different data types or objects.
It allows methods to behave differently based on the
object they are called on, promoting flexibility and
extensibility.

Modularity OOP promotes modular design, making code more
organized and easier to maintain.

Reusab‐
ility

Through inheritance and polymorphism, code reuse is
facilitated, reducing redundancy.

Scalability OOP supports building large-scale applications by
structuring code into manageable units.

Abstra‐
ction

OOP allows developers to focus on high-level functi‐
onality without worrying about implementation details.

By ArshdeepArshdeep
cheatography.com/arshdeep/

Not published yet.
Last updated 3rd April, 2024.
Page 9 of 9.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/arshdeep/
http://www.cheatography.com/arshdeep/cheat-sheets/introduction-to-python
http://www.cheatography.com/arshdeep/
https://apollopad.com

	Introduction to Python Cheat Sheet - Page 1
	Looping Statements
	Evolution of Python

	Introduction to Python Cheat Sheet - Page 2
	Data Types
	Rules for Identifiers
	Features of Python
	Identity Operators
	Membership Operators
	Data Types

	Introduction to Python Cheat Sheet - Page 3
	Comparison Operators
	Logical Operators
	Functions

	Introduction to Python Cheat Sheet - Page 4
	Exception Handling

	Introduction to Python Cheat Sheet - Page 5
	File Handling
	Arithmetic Operators
	Conditional Statements
	Common Functions

	Introduction to Python Cheat Sheet - Page 6
	Variables
	Best Practices for Identifiers
	Bitwise Operators
	Tokens
	Assignment Operators

	Introduction to Python Cheat Sheet - Page 7
	Applications of Python
	Paradigms of Python

	Introduction to Python Cheat Sheet - Page 8
	Modules

	Introduction to Python Cheat Sheet - Page 9
	Object Oriented Programming

