\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Arsh.b} \pdfinfo{ /Title (9-2-transport-in-the-phloem-of-plants.pdf) /Creator (Cheatography) /Author (Arsh.b) /Subject (9.2 Transport in the Phloem of Plants Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{8A9A5B} \definecolor{LightBackground}{HTML}{F7F8F4} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{9.2 Transport in the Phloem of Plants Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Arsh.b} via \textcolor{DarkBackground}{\uline{cheatography.com/179523/cs/38007/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Arsh.b \\ \uline{cheatography.com/arsh-b} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 1st April, 2023.\\ Updated 1st April, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Active Translocation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Translocation}} is the movement of organic compounds from sources to sinks.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The {\bf{source}} is where organic compounds are made or stored, while the {\bf{sink}} is where the organic compounds are consumed.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Translocation occurs in the vascular tube system called the {\bf{phloem}}.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Glucose is stored and transported as sucrose because it is soluble but metabolically inert.} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The fluid in the poem is called the plant sap.} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Phloem structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/arsh-b_1680201768_phloem-structure-2_med.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Xylem and Phloem in Roots}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/arsh-b_1680201813_root1_med.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Xylem and Phloem in the Stem}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/arsh-b_1680201849_stem1_med.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Phloem Loading}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{Active transport is used to load organic compounds into phloem sieve tubes at the source.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Organic compounds produced at the source are actively loaded into phloem sieve tubes by companion cells.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Symplastic loading}} occurs when materials pass into the sieve tube via the interconnecting {\emph{plasmodesmata}}.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Apoplastic loading}} occurs when materials are pumped across the intervening cell wall by membrane proteins.} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} Aploplastic loading of sucrose into the phloem sieve tubes is a form of active transport. & Hydrogen ions (H+) are actively transported out of phloem cells by proton pumps. \tn % Row Count 16 (+ 5) % Row 5 \SetRowColor{white} & The concentration of hydrogen ions consequently builds up outside of the cell, creating a proton gradient. \tn % Row Count 22 (+ 6) % Row 6 \SetRowColor{LightBackground} & Hydrogen ions passively diffuse back into the phloem cell via a co-transport protein, which requires sucrose movement. \tn % Row Count 28 (+ 6) % Row 7 \SetRowColor{white} & This results in a build up of sucrose within the phloem sieve tube for subsequent transport from the source. \tn % Row Count 34 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Mass Flow}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{High concentrations of solutes in the phloem at the source lead to water uptake by osmosis.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{Incompressibility of water allows transport along hydrostatic pressure gradients.}}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{At the source}}}}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{The active transport of solutes (such as sucrose) into the phloem by companion cells makes the sap solution hypertonic.} \tn % Row Count 8 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{This causes water to be drawn from the xylem via osmosis.} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Due to the incompressibility of water, this build up of water in the phloem causes the hydrostatic pressure to increase.} \tn % Row Count 13 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{This increase in hydrostatic pressure forces the phloem sap to move towards areas of lower pressure (mass flow).} \tn % Row Count 16 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Hence, the phloem transports solutes away from the source (and consequently towards the sink).} \tn % Row Count 18 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{Raised hydrostatic pressure causes the contents of the phloem to flow towards sinks.}}} \tn % Row Count 20 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{At the sink}}}}} \tn % Row Count 21 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{The solutes within the phloem are unloaded by companion cells and transported into sinks.} \tn % Row Count 23 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{This causes the sap solution at the sink to become increasingly hypotonic.} \tn % Row Count 25 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Consequently, water is drawn out of the phloem and back into the xylem by osmosis.} \tn % Row Count 27 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{This ensures that the hydrostatic pressure at the sink is always lower than the hydrostatic pressure at the source.} \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Mass Flow (cont)}} \tn % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Hence, phloem sap will always move from the source towards the sink.} \tn % Row Count 2 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{When organic molecules are transported into the sink, they are either metabolised or stored within the tonoplast of vacuoles.} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Phloem structure}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{Structure-function relationships of phloem sieve tubes.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Phloem serve tubes are primarily composed of two main types of cells:} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Sieve element cells}} & Sieve elements are long and narrow cells that are connected together to form the sieve tube.\{\{nl\}\}- They are connected by {\emph{sieve plates}} at the transverse ends.\{\{nl\}\}- They have no nuclei and reduced number of organelles.\{\{nl\}\}- They have thick and rigid cell walls to withstand the hydrostatic pressures which facilitate flow. \tn % Row Count 18 (+ 14) % Row 3 \SetRowColor{white} {\bf{Companion cell}} & Provide metabolic support for sieve element cells and facilitate the loading and unloading of materials at the source and sink.\{\{nl\}\}- Possess an infolding plasma membrane which increases SA:Vol ratio to allow for more material exchange.\{\{nl\}\}- Have many mitochondria to fuel active transport of materials in the sieve tube.\{\{nl\}\}- Contain appropriate {\emph{transport proteins}} within the plasma membrane to move materials into and out of a sieve tube. \tn % Row Count 36 (+ 18) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Phloem structure (cont)}} \tn % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Sieve elementals are unable to sustain independent metabolic activity without the support of a companion cell. {\bf{Plasmodesmata}} exist between sieve elements and companion cells in relatively large numbers. These connect the cytoplasm of the two cells and mediate the symplastic exchange of metabolites.} \tn % Row Count 7 (+ 7) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\emph{Identification of xylem and phloem in microscope images of stem and root.}}} \tn % Row Count 9 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Xylem and phloem vessels are grouped into bundles that extend from the roots to the shoots in vascular plants.\{\{nl\}\}Differences in distribution and arrangement exist between plant types and differences in the diameter of the cavity can be used to identify the different vessels.} \tn % Row Count 15 (+ 6) % Row 7 \SetRowColor{white} {\bf{{\emph{Roots}}}} & In monocotyledons, the stele is large and vessels will form a radiating circle around the central pith.\{\{nl\}\}Xylem vessels will be located more internally and phloem vessels will be located more externally. \tn % Row Count 24 (+ 9) % Row 8 \SetRowColor{LightBackground} & In dicotyledons, the stele is very small and the xylem is located centrally with the phloem surrounding it.\{\{nl\}\}Xylem vessels may form a cross-like shape ('X' for xylem), while the phloem is situated in the surrounding gaps. \tn % Row Count 34 (+ 10) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Phloem structure (cont)}} \tn % Row 9 \SetRowColor{LightBackground} {\bf{{\emph{Stem}}}} & In monocotyledons, the vascular bundles are found in a scattered arrangement throughout the stem.\{\{nl\}\}Phloem vessels will be positioned externally (towards outside of stem) – remember: phl{\emph{o}}em = {\emph{o}}utside \tn % Row Count 9 (+ 9) % Row 10 \SetRowColor{white} & In dicotyledons, the vascular bundles are arranged in a circle around the centre of the stem (pith).\{\{nl\}\}Phloem and xylem vessels will be separated by the cambium (xylem on inside ; phloem on outside). \tn % Row Count 18 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Translocation Rate}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{Analysis of data from experiments measuring phloem transport rates using aphid stylets and radioactively- labelled carbon dioxide.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Aphids}} are a group of insects, (order {\emph{Hemiptera}}) which feed primarily on sap extracted from the phloem.\{\{nl\}\}They have a long, protruding mouthpiece (stylet) which pierces the plant's sieve tube to extract sap. This is aided by directive enzymes that soften tissue layers.\{\{nl\}\}When the stylet is severed sap continues to flow from the plant due to the hydrostatic pressure within the sieve tube.} \tn % Row Count 12 (+ 9) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{{\emph{Measuring phloem transport}}}}} \tn % Row Count 13 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Aphids can be used to collect sap at various sites along a plant's length and thus provide a measure of phloem transportation lengths.} \tn % Row Count 16 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Process}}} \tn % Row Count 17 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{A plant is grown within a lab with the leaves sealed within a glass chamber containing radioactively-labelled carbon dioxide.} \tn % Row Count 20 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The leaves will convert the CO2 into radioactively-labelled sugars (via photosynthesis), which are transported by the phloem.} \tn % Row Count 23 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Aphids are positioned along the plant's length and encouraged to feed on the phloem sap.} \tn % Row Count 25 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Once feeding has commenced, the aphid stylet is severed and sap continues to flow from the plant at the selected positions.} \tn % Row Count 28 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The sap is then analysed for the presence of radioactively-labelled sugars.} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Translocation Rate (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The rate of phloem transport (translocation rate) can be calculated based on the time taken for the radioisotope to be detected at different positions along the plant's length.} \tn % Row Count 4 (+ 4) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{{\emph{Factors affecting translocation rate}}}}} \tn % Row Count 5 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The rate of phloem transport will principally be determined by the concentration of dissolved sugars in the phloem. This concentration is impacted by:\{\{nl\}\}- rate of photosynthesis\{\{nl\}\}- trade of cellular respiration\{\{nl\}\}- rate of transpiration\{\{nl\}\}- diameter of the sieve tubes} \tn % Row Count 11 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}