\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Arsh.b} \pdfinfo{ /Title (9-1-oxidation-and-reduction.pdf) /Creator (Cheatography) /Author (Arsh.b) /Subject (9.1 Oxidation and reduction Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{800020} \definecolor{LightBackground}{HTML}{FBF7F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{9.1 Oxidation and reduction Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Arsh.b} via \textcolor{DarkBackground}{\uline{cheatography.com/179523/cs/37883/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Arsh.b \\ \uline{cheatography.com/arsh-b} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th March, 2023.\\ Updated 25th March, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Definitions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{Oxidation and reduction can be considered in terms of oxygen gain/hydrogen loss, electron transfer or change in oxidation number.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{The definition that covers all types of redox (reduction-oxidation) reactions is based on the transfer of electrons.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Oxidation}} is the loss of electrons by a chemical species, and can be identified when:\{\{nl\}\}a species loses electrons\{\{nl\}\}a species loses hydrogen atoms\{\{nl\}\}a species gains oxygen atoms\{\{nl\}\}the oxidation state of an atom increases.} \tn % Row Count 11 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Reduction}} is the gain of electrons by a chemical species, and occurs when:\{\{nl\}\}a species Gaines electrons\{\{nl\}\}a species loses hydrogen atoms\{\{nl\}\}a species loses oxygen atoms\{\{nl\}\}the oxidation state of an atom decreases.} \tn % Row Count 16 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{An oxidizing agent is reduced and a reducing agent is oxidised.}}} \tn % Row Count 18 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{An {\bf{oxidising agent}} is a substance that oxidises another substance and is reduced itself by gaining electrons.} \tn % Row Count 21 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{A {\bf{reducing agent}} is a substance that reduces another substance and is oxidised itself by losing electrons.} \tn % Row Count 24 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Half-equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{ Identification of the species oxidized and reduced and the oxidizing and reducing agents, in redox reactions.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{A {\bf{half-equation}} is an equation that shows the changes that happen in a redox reaction dude to either oxidation or reduction only.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{The {\bf{oxidation half-equation}} is a half-equation that shows only the chemical changes that happen in a redox reaction due to oxidation.} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{The {\bf{reduction half-equation}} is a half-equation that shows only the chemical changes that happen in a redox reaction due to reduction.} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Rules to write half-equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Assign oxidation states to determine which atoms are being oxidized and which are being reduced.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Write half-equations for oxidation and reduction as follows:\{\{nl\}\}balance the atoms other than H and O\{\{nl\}\}balance each half-equation for O by adding H2O as needed\{\{nl\}\}balance each half-equation for H by adding H+ as needed\{\{nl\}\}balance each half-equation for charge by adding electrons to the sides with the more positive charge\{\{nl\}\}check that each half-equation is balanced for atoms and for charge} \tn % Row Count 11 (+ 9) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Equalise the number of electrons in the two half-equations by multiplying each appropriately.} \tn % Row Count 13 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Add the two half-equations together, cancelling out anything that is the same on both sides.} \tn % Row Count 15 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Balanced oxidation half-equations will have electrons on the product side. Balanced reduction half-equations will have electrons on the reactant side.}}} \tn % Row Count 19 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Rules for oxidation state}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{Deduction of the oxidation states of an atom in an ion or compound.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Oxidation state}} is a measure of how many electrons an atom has gained or lost when forming a compound.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Atoms in the free (uncombined) element have an oxidation state of zero.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{In simple ions, the oxidation state is the same as the charge on the ion.} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{The oxidation states of all the atoms in a neutral (uncharged) compound must add up to zero.} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{The oxidation states of all the atoms in a polyatomic ion must add up to the charge on the ion.} \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{The usual oxidation state for an element is the same as the charge on its most common ion.} \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Most main group non-metals, the elements at the bottom of group 14, and transition elements have oxidation states that vary in different compounds – depending on the conditions and other elements present.} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.596 cm} x{2.356 cm} x{3.648 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Common oxidation states}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{{\emph{Deduction of the oxidation states of an atom in an ion or compound.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Substance} & Usual oxidation state & Exceptions \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Group 1 metals & +1 & \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Group 2 metals & +2 & \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \seqsplit{Halogens} & -1 & (when Cl is combines with O or F) \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} Oxygen & -2 & Peroxides \tn % Row Count 11 (+ 1) % Row 6 \SetRowColor{LightBackground} \seqsplit{Hydrogen} & +1 & Metal hydrides \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Redox titration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{A redox titration determines the concentration of an unknown solution by titrating it against a standard solution. A colour change associated with the redox reaction shows when the equivalence point has been reached.} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Activity series}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{The activity series ranks metals according to the ease with which they undergo oxidation.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Metals are ranked in the activity series according to how easily they lose electrons and are oxidized.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{The activity series can be used to predict whether or not a redox reaction that involves a metal can happen.} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Winkler Method}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{The Winkler Method can be used to measure biochemical oxygen demand (BOD), used as a measure of the degree of pollution in a water sample.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Biochemical oxygen demand}} (BOD) is the quantity of oxygen needed to break down organic matter in a sample of water over a 5-day period at a set temperature.} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{A high BOD means that high levels of bacteria or algae are present in the water, resulting in a low level of dissolved oxygen.} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The {\bf{Winkler method}} uses a series of three redox reactions to determine the concentration of dissolved oxygen in a water sample.} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} Dissolved oxygen reacts with Mn\textasciicircum{}2+\textasciicircum{} ions in basic conditions to form MnO2. & MnO2(s) + O2(aq) +4OH\textasciicircum{}-\textasciicircum{}(aq) -\textgreater{} 2MnO2(s) + 2H2O(l) \tn % Row Count 17 (+ 4) % Row 5 \SetRowColor{white} MnO2 reacts with I\textasciicircum{}-\textasciicircum{} in acidic conditions to form Mn\textasciicircum{}2+\textasciicircum{} & MnO2(s) + 2I\textasciicircum{}-\textasciicircum{}(aq) +4H\textasciicircum{}+\textasciicircum{}(aq) -\textgreater{} Mn\textasciicircum{}2+\textasciicircum{}(aq) + I2(aq) +2H2O(l) \tn % Row Count 21 (+ 4) % Row 6 \SetRowColor{LightBackground} I2 is titrated with S2O3\textasciicircum{}2-\textasciicircum{} to give I\textasciicircum{}-\textasciicircum{} and S4O6\textasciicircum{}2-\textasciicircum{} & 2S2O3\textasciicircum{}2–\textasciicircum{}(aq) + I\textasciicircum{}2\textasciicircum{}(aq) ➝ S4O6\textasciicircum{}2–\textasciicircum{}(aq) + 2I\textasciicircum{}–\textasciicircum{}(aq) \tn % Row Count 24 (+ 3) % Row 7 \SetRowColor{white} The moles of dissolved oxygen in the original solution can be calculated from the moles of S2O3\textasciicircum{}2-\textasciicircum{} used in the final reaction. & {\emph{n}}(S2O3\textasciicircum{}2–\textasciicircum{}) = 4{\emph{n}}(O2) \tn % Row Count 31 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}