
ES6 Cheat Sheet
by arrow96 via cheatography.com/77976/cs/19118/

Let and Const

let and const Hoisting
problem

let -- allows block
scoping and hoisting
problem in ES5 is
solved in ES6.Va riables
declared with the var
keyword can not have
Block Scope. Variables
declared inside a block {}
can be accessed from
outside the block.

When we use a
undeclared
variable with
var keyword in
ES5 we get
unde fined
variable name
error. This is
the example for
hositing
problem.

const -- It does NOT
define a constant value.
It defines a constant
reference to a value.
Because of this, we
cannot change constant
primitive values, but we
can change the
properties of constant
objects.

Whereas when
we use let
keyword ,
hoisting
problem is
solved in ES6.
We get the
Error as Refe ‐
rence Error
<va riable
name> not
defined.

This keyword

The JavaScript this keyword refers to the
object it belongs to. It has different values
depending on where it is used: In a method,
this refers to the owner object. Alone, this
refers to the global object

The 4 rules of finding out the value of
this keyword

Rule 1 : When the keyword this is not
inside the declared object then it refers to
the global object

Rule 2 : When the keyword this is inside
the declared object , then it refers to the
closest parent object

Rule 3 : whenever the context of the object
changes , we use call , apply and bind to
set the value of this explic itly.

Rule 4 : Whenever we create a object using
new keyword inside the function defini tion,
the this keyword refers to the new object
that is being created

Arrow Functions

Arrow function or fat arrow function --
shorter version of syntax when compared to
the normal function

We cannot manipulate the value of this
keyword inside the arrow function when we
use call ,apply or bind

We do not have access to the prot otype
field when we declare the function using fat
arrow symbol

Default function parameters

when we set up default function parameters
we get access to the functions and the
variables in the context

data= (pr ice ,co st= 0.0 7)= >{
consol e.l og(pri ce* cost) }
data(5.00)

Rest and spread operator

Rest Spread

It allows to convert the no
of parameters into an array

It allows to
convert the
array into an
parameters

It is denoted by "..." in the
function definition or
function expression

It is also
denoted by
the "..." , but
used to
destru cture
the array

a = (...da ta) =>{
consol e.l og(data) }
a(2,3, 3,3 ,3) (5) [2,
3, 3, 3, 3]a(2,3 ,3, ‐
3,3 ,)(5) [2, 3, 3,
3, 3]

Spread
operator can
split the
string into
char

The rest parameters must
be at the end

a =

[...'acd']

(3) ["a ",
" c", " d"]

Ref -- https: //j ava scr ipt.in fo/ res t-p ara met ‐
ers -sp rea d-o perator

Object Literal

It is shorthand for initia lizing the object
properties and also method

Ref -- https: //d ev.t o/ sar ah_ chi ma/ enh anc ‐
ed- obj ect -li ter als -in -es 6-a9d

Prototype

All JavaScript objects inherit properties and
methods from a prototype.

When we create the constr uctor function ,
prot otype property is created for that
constr uctor function

The only inconv enience of using prototypes
is that there is no easy way to create private
methods or variables.

Ref -- https: //s tac kov erf low.co m/q ues tio ns/ ‐
843 345 9/w hat -s- the -pu rpo se- of- pro totype

Ref -- https: //i dia llo.co m/j ava scr ipt /wh y-u ‐
se- pro totypes

for of loop

//for of loop is used in

iterable

var a = [1,2,2 ,2,2];
for (let i of a) {

consol e.l og(i);
}

Octal and binary Literals

var a = 0O12; //octal literals

either O or o is allowed

consol e.l og(a)//12
var f = 0b111;

consol e.l og(f);

Template literals

It can create the multiline strings

new.target

The new.target property lets you detect
whether a function or constr uctor was
called using the new operator. In constr ‐
uctors and functions instan tiated with the
new operator, new.target returns a
reference to the constr uctor or function. In
normal function calls, new.target is
undefined.

Ref -- https: //d eve lop er.m oz ill a.o rg/ en- US/ ‐
doc s/W eb/ Jav aSc rip t/R efe ren ce/ Ope rat ‐
ors /ne w.t arget

Example

class A{
constr uct or(){
this.data = 55;

http://www.cheatography.com/
http://www.cheatography.com/arrow96/
http://www.cheatography.com/arrow96/cheat-sheets/es6
https://javascript.info/rest-parameters-spread-operator
https://dev.to/sarah_chima/enhanced-object-literals-in-es6-a9d
https://stackoverflow.com/questions/8433459/what-s-the-purpose-of-prototype
https://idiallo.com/javascript/why-use-prototypes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new.target

consol e.l og(" Inside the base")
consol e.l og(new.ta rge t.d umm())
}
}

class B extends A{
constr uct or(){
super()
consol e.l og(new.ta rget)
consol e.l og(typeof B)
this.data = 66;
consol e.l og(thi s.data)
}
static dumm(){
return 57;
}
}

By arrow96
cheatography.com/arrow96/

Not published yet.
Last updated 20th March, 2019.
Page 1 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/arrow96/
https://apollopad.com

	ES6 Cheat Sheet - Page 1
	Let and Const
	Arrow Functions
	Prototype
	Default function parameters
	for of loop
	Rest and spread operator
	Octal and binary Literals
	This keyword
	Template literals
	new.target
	Object Literal

