Cheatography

Initial commands

git --version Check yout git version git log --oneline -- Commits from a git stash Save your changes without
git config - Configure your name as author="Name" given author push -m committing them if you need to
global default git log --oneline -- Commits from a "Your switch to a different branch.
user.name after|--before="Date  given date message"  Stashing = Saving something
"Your hame" | Relative date” in a safe place
git config -- Configure your email as git log --oneline -- Commits that git stash Stashing new untracked files
global default grep="Sometext" contain the specified push --all
user.email text, case sensitive -m "Your
"Your email® git log --oneline - Find all a commits message
git config -- Configure a default S"Sometext" that have added or git stash Show a list of stashed files
global core.e- editor, here vscode is removed the list
ditor "code -- being used as default specified text git stash Show specific stashed file by
wait" git log --oneline - Mixed with patch to show its index
git config -- Open and edit your S"Sometext" -- show full details stash@{0}
global -e configuration settings patch about the commit 10
git config -- How git should handle git log --oneline Filter commits by a git stash Apply this stash to our working
global core.a- end of lines hash..hash given range of apply 0 directory
utocrlf "input/- commits git stash Remove a specific stash
true” git log --oneline -- Find commits that drop 1
file.txt have modified a git stash Remove all stashes
Viewing staged and unstaged changes given file clear
git diff - Staging area changes that are git log --oneline -- Short output for
-staged  going to the next commit stat - file.txt changes over a Viewing changes across commits
given file git diff HEAD~2  Show differences

e git log --oneline -- Full changes over a HEAD between a range of
git log Show history of your patch -- file.txt given file commits

repository git log --pretty=for- Customize the way git diff HEAD~2  Same as above but for a
git log - Short history output mat:"Your format" you see output, then HEAD file.txt single file
oneline use alias for ease of git diff HEAD~2  Show list of modified
git log -- Show history from the first use HEAD --name- files in a given range of
oneline -- commit git config --global Alias example only commits
reverse alias.youralias "log - git diff HEAD~2  Show list of files and the
git log -- Show all the files that have -pretty=for- HEAD --name- type of change for each
oneline -- been changed in each mat:"Your format status one
stat commit
gitlog --stat  More details about each

commit
git log -- Full changes details in each
oneline -- commit
patch

Viewing history (cont)

Git cheat sheet Cheat Sheet
by Ariel Gonzalez (ArielJGS) via cheatography.com/159091/cs/33552/

By Ariel Gonzalez (ArielJGS)
cheatography.com/arieljgs/

Not published yet.
Last updated 7th August, 2022.
Page 1 of 4.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/arieljgs/
http://www.cheatography.com/arieljgs/cheat-sheets/git-cheat-sheet
http://www.cheatography.com/arieljgs/
https://readable.com

Git cheat sheet Cheat Sheet
by Ariel Gonzalez (ArielJGS) via cheatography.com/159091/cs/33552/

Cheatography

No fast forward merge Commiting changes

About merging

Fast-f- Fast forward merge can be git merge -- Merges the specified git Commit changes from your
orward performed when there is a direct no-ff branch without using fast commit  staging area and add message
linear path from the source branch bugfix/login- forward merge -m
to the target branch. In fast-f- form "Your
orward merge, git simply moves git config -- Disable fast forward in (e
the source branch pointer to the global ff no every repository ge"
target branch pointer without qit Add a longer message for bigger
creating an extra merge commit. commit  or more detailed descriptions

Three  Fast-forward merge is not gitmerge  Merges a branch into master git Skip the staging area and commit
way possible if the branches have bugfix/si- commit  changes directly
merge  diverged. Then we need a 3-way gnup- -am
merge which uses a dedicated form "Your
commit to merge two histories or
) git log -- Shows a graph for easier messa
you can say branches. This new ge"
o ) oneline --  understanding of merges
commit is based on three different ) ) )
all -- Tips Commits shouldn't be too big or
commits, the common ancestor of
o graph too short, also use present or
our branches which includes the t bs but stick |
before code and the tips of our git View list of branches that have pastiense verbs bult sfick fo only
branches which contains the after branch --  been merged into master, it's one and be clear with your
code. merged safe to delete these branches messages
Fast-f- Cons: Pollutes the history, linear git Delete a branch Restoring files
orward  history is preferred for some branch -d : ..
contro  people bugfix/si- git restore -- Unstage or restore a file in
ey gnup- staged file.txt  the staging area taking the
form content from the latest
Pros: True reflection of history, commit
easier to undo a feature git View list of branches that have
branch -  not been merged into master git restore -- Restore a file to an earlier
no-m- source=hash version
erged file.txt |
HEAD~1
git merge  Abort a merge if you run into a il ixt
e.
--abort conflict that you're not ready to e
fix git clean -fd Discard local changes for
new or modified files and
Managing your first repository directories
git init Initialize your repository
git status Get status of your current
changes
git status -s Short status information
git add " /file- Add files to the staging
1|file2/*.txt" area for review
By Ariel Gonzalez (ArielJGS) Not published yet. Sponsored by Readable.com
cheatography.com/arieljgs/ Last updated 7th August, 2022. Measure your website readability!

Page 2 of 4. https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/arieljgs/
http://www.cheatography.com/arieljgs/cheat-sheets/git-cheat-sheet
http://www.cheatography.com/arieljgs/
https://readable.com

Git cheat sheet Cheat Sheet
by Ariel Gonzalez (ArielJGS) via cheatography.com/159091/cs/33552/

Restoring files (cont) Working with branches Ignore files

Cheatography

Note The restore command takes a git branch Show a list of existing Create Include any files that you want
copy from the next environment, branches .gitignore  to ignore here, examples: logs/
for example, the working git branch Create a new branch with | main.log | *.log
directory takes a copy from the name a given name Note This only ignores files or direct-
staging area and the stagin iag i

ang . ang git switch Switch to a different ories if they have not been
area takes it from the latest name branch committed in the repository
commit before
) ) ) ) git switch -C ~ Create and switch to a
git Restore file from a given commit name branch git rm - Remove directory that was

checkout hash cached -  already committed by accident

git branch-m  Change the name of a

hash ame e r logs/ to start ignoring it with .gitignore
file.txt
bugfix/signup-
Checking out a commit
s e st Show what was git diff See differences between git Eo bz N s Er dnse
. . . master..bugf-  branches checkout previous commit, this will show
HEAD~1 changed in a given ix/signup- "hash" the state of every file as it was
commit g i 11
form at that point in time
git show "hash:file-  Show the content of ; . ;
sffle txt | a file in a given git diff If you're already in master gitlog You will need to add the
. ! . . bugfix/signup-  there is no need to specify oneline -  parameter --all to show every
HEAD~1files/fi- commit form it -alll commit when you're checking
let.txt" i
an old commit
R Show all files in a gitbranch-d  Delete a branch after it
. . . bugfix/signup-  has served its purpose git CB LRI D polF OB
HEAD~1 given commit form checkout
git show HEAD~1 --  Show files that have ) o master
name-only been modified in a git branch -D  Force deletion if you want
bugdfix/signup- to discard any changes
given commit - 9 gntp de in thi Z hg Finding contributors using shortlog
orm made in this branc
git show HEAD~1 --  Show files + status: git shortlog  Show people that have contri-
name-status added, deleted, Removing files buted to the project
modifiedetc... . .
git Is- Show current files in your git shortlog  Sorted by number of commits
5 i (e Show who modified a gitrm Remove files from the current eligmerlisy) - SgpEe s com
' aae " ffile1|f-  directory and staging area at the n-s messages
9 ile2/* txt" same time git shortlog  Show email address
git blame -e With email -n-s-e
file.txt Renaming or Moving files
it bl -e-L 1,3 With f . L
fg: . e:me © I _? rTnge © git mv Move or rename files in the
ile.tx specific lines
P oldnam- working directory and staging
e.txt area at the same time
newnam-
e.txt
By Ariel Gonzalez (ArielJGS) Not published yet. Sponsored by Readable.com
cheatography.com/arieljgs/ Last updated 7th August, 2022. Measure your website readability!

Page 3 of 4. https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/arieljgs/
http://www.cheatography.com/arieljgs/cheat-sheets/git-cheat-sheet
http://www.cheatography.com/arieljgs/
https://readable.com

Cheatography

Finding contributors using shortlog (cont)

git shortlog -n -s -e -- Show contributors Note

before="" --after="" for a given date

Tagging

git tag Show a list of existing tags

git tag -n With their messages

gittagv1.0 Create a tag for the current

latest commit

gittagv1.0 Create a tag for a specific

hash commit

git Then you can reference a

checkout commit by its tag

v1.0
git tag -
avl.1-
m
"Your
messa
ge"
git
show
v1.1
git tag -
dvi.1

Git cheat sheet Cheat Sheet
by Ariel Gonzalez (ArielJGS) via cheatography.com/159091/cs/33552/

Tagging (cont)

Git supports two types of tags:
lightweight and annotated. A
lightweight tag is very much like
a branch that doesn’t change—
it's just a pointer to a specific
commit. Annotated tags,
however, are stored as full
objects in the Git database.
They’re checksummed; contain
the tagger name, email, and
date; have a tagging message;
and can be signed and verified
with GNU Privacy Guard (GPG).
It's generally recommended that
you create annotated tags so
you can have all this information;
but if you want a temporary tag
or for some reason don’t want to
keep the other information,

lightweight tags are available too.

Create an annotated tag and
provide a message to it

Show commit by its tag

Delete a tag

By Ariel Gonzalez (ArielJGS)
cheatography.com/arieljgs/

Not published yet.
Last updated 7th August, 2022.

Page 4 of 4.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/arieljgs/
http://www.cheatography.com/arieljgs/cheat-sheets/git-cheat-sheet
http://www.cheatography.com/arieljgs/
https://readable.com

	Git cheat sheet Cheat Sheet - Page 1
	Initial commands
	Stashing
	Viewing staged and unstaged changes
	Viewing changes across commits
	Viewing history

	Git cheat sheet Cheat Sheet - Page 2
	About merging
	No fast forward merge
	Commiting changes
	Managing merges
	Restoring files
	Managing your first repository

	Git cheat sheet Cheat Sheet - Page 3
	Working with branches
	Ignore files
	Checking out a commit
	Viewing a commit
	Finding contri­butors using shortlog
	Removing files
	Blaming
	Renaming or Moving files

	Git cheat sheet Cheat Sheet - Page 4
	Tagging


