Geometry	
Triangles	Are three sides, three angles, and all angles add up to 180 degrees.
Acute	All interior angles must be 0-90 degrees. All equila-
Triangles	teral triangles are acute.
Scalene	All sides and angles differ in measure.
Triangles	
Right	Only one angle is equal to 90 degrees
Triangles	Two opposite sides and angles are equal to each
Isosceles	other.
Triangles	All sides equal. All angles equal to 60 degrees.
Equilateral	
Traingles	

```
Finding a missing internal angle:
\(a+b+c=180^{\circ}\)
\(50^{\circ}+30^{\circ}+c=180^{\circ}\)
\(180^{\circ}-50^{\circ}-30^{\circ}=c\)
\(100^{\circ}=c\)
```

Straight lines are equal to 180 degrees.

Finding the exterior/internal angle with a straight line:

```
x+y=180
40}+y=18\mp@subsup{0}{}{\circ
180}-4\mp@subsup{0}{}{\circ}=
140 }=
```

Polygons	
Polygons	Any enclosed geometrical shape that is composed of straight lines.
Regular	All sides and interior angles are equal.
Polygons	A segment connecting two non-adjacent corners in a polygons.

Polygons (cont)	
Formula to find the sum of interior	$180^{\circ}(n-2) . n=$ number of
angles:	sides.
Formula to find the measure of interior	$\left(180^{\circ}(n-2)\right) / n$
angles:	

Find the sum of interior angles of a nine (9) sided polygon.
$180^{\circ}(n-2)$
$180^{\circ}(9-2)$
$180^{\circ}(7)$
1260°

Find the measure of interior angles of a 3 sided polygon:
$\left(180^{\circ}(n-2)\right) / n$
$\left(180^{\circ}(3-2)\right) / 3$
$\left(180^{\circ}(1)\right) / 3$
$180^{\circ} / 3$
60°

Quadrilaterals

Quadrilat- Any four sided polygon.
erals

Parallelo-	Opposite sides are parallel to each other. Opposite grams
sides and angles are equal in measure.	
Rectagles	Parallelograms with all sides that are equal. All angles equal to 90°.
Squares	Parallelograms with all sides that are equal. All sides are 90°
Isosceles	One set of sides are parallel. Other sides equal in measure.
Trapezoids	Two sets of equal sides. No lines are parallel.
Kite	Twith opposite sides equal in mease

Squares are also Rhombus, Rectangles, and Isosceles Trapezoids

By ArcelM4

cheatography.com/arcelm4/

Published 9th February, 2024.
Last updated 24th January, 2024.
Page 1 of 5 .

Sponsored by Readable.com Measure your website readability! https://readable.com

Diagonals	
Formula for finding the number of diagonals in a polygon:	$\mathrm{D}=(n(n-$ 3))/2
Diagonals - Cut parallelograms into two equal triangles. - Bisect each other.	
Adjacent angles in a parallelogram add up to 180° Opposite angles are equal to each other.	
Diagonal Diagram	

Probability (cont)	
Odds	A ratio that compares the number of possible successful outcomes to the number of possible unsuccessful outcomes.
Odds Formula	Successful Outcomes: Unsuccessful Outcomes
Theoretical Probability	A ratio that compares the number of possible successful outcomes to the total number of possible outcomes Determined by reason or calculation.
Experi- mental Probab- ility	A ratio that compares the number of times an event occurs to the total number of trials or tests Determined by experiment.
Expected Value	Expected value is an application of probability that involves the likelihood of a gain or loss.

Adjacent/Opposite Angles Diagram
Same colours are opposite angles. Adjacent angles are next to each other.
Probability
Probab- ility The mathematically likelihood that an event will occur. A ratio that compares the possible successful outcomes, to the total number of outcomes.
Probab- Number of successful outcomes, divided by total number ility of outcomes. (1/10)

Published 9th February, 2024.
Last updated 24th January, 2024.
Page 2 of 5 .

Sponsored by Readable.com Measure your website readability! https://readable.com

Probability (cont)

Expected Value Formula EV=[\%(gain) x \$gain]-[\%(lose) x \$loss]
Probability of picking card \#5: 1/5
Odds of picking card \#5: 1:4
Odds of not picking card \#5: 4:1
Theoretical Probability: $1 / 5$ chance of choosing card \#5.
Experimental Probability: He picked up card \#5 two times. $2 / 5$ of picking card \#5.

There is a 1 in 5 chance of winning $\$ 4.00$. It costs $\$ 1.00$ to play.

```
EV=[%(gain) $(gain)]-[%(loss) $(loss)]
EV=[1/5 4] - [4/5 1]
EV=[0.2 4]-[0.8 1]
EV=0.8-0.8
EV=$0
```


Law of Sines

Sine	Used to find lengths of sides, or angles of non-right
Law	triangles.
Formula:	$a / \sin (\mathrm{A})=b / \sin (\mathrm{B})=c / \sin (\mathrm{C})$

Find side a :

$a / \sin \left(30^{\circ}\right)=15 \mathrm{~cm} / \sin \left(45^{\circ}\right)$
$a=\sin \left(30^{\circ}\right)\left(15 \mathrm{~cm} / \sin \left(45^{\circ}\right)\right)$
$a=10.61 \mathrm{~cm}$

Find $\sin (\mathrm{C})$:
$\sin (C) / 9=\sin (47) / 11$
$\sin (C)=9^{*}[\sin (47) / 11]$
$C=\sin ^{-1}(0.59838)$
$C=36.75^{\circ}$

Find Side Diagram: Law of Sines

Find $\sin (\mathrm{C})$ Diagram

Law of Cosines	
Cosine Law	Used to find angles or sides when Sine Law isn't possible.
Formula to find with a given angle:	$a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A}$
Formula when there are no angles:	$\operatorname{Cos}(\mathrm{A})=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$
$a / \sin \left(40^{\circ}\right)=15 / \sin (B)=8 / \sin (C)$ cannot be calculated so Cosine Law is used	
Find side (a)	
$a^{2}=\mathrm{b} 2+\mathrm{c} 2-2 b c \cos \mathrm{~A}$	
$a^{2}=15^{2}+8^{2}-2(15)(8) \operatorname{Cos}\left(40^{\circ}\right)$	
$a^{2}=225+64-240 \operatorname{Cos}\left(40^{\circ}\right)$	
$a^{2}=105.14933$	
$a=\sqrt{ } 105.14933$	
$a=10.25$	
Find cosine(A)	
$\operatorname{Cos}(\mathrm{A})=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$	
$\operatorname{Cos}(\mathrm{A})=\left(7^{2}+5^{2}-6^{2}\right) / 2(7)(5)$	
$\operatorname{Cos}(A)=(49+25-36) / 70$	
$\operatorname{Cos}(A)=0.542857$	
$A=\cos ^{-1}(0.542857)$	
$\mathrm{A}=57.12^{\circ}$	

Diagram: What to use

By ArcelM4

cheatography.com/arcelm4/

Published 9th February, 2024.
Last updated 24th January, 2024.
Page 3 of 5 .

Sponsored by Readable.com

Measure your website readability! https://readable.com

Geometry, Probability, Stats, and Measurements Cheat Sheet by ArcelM4 via cheatography.com/198742/cs/42092/

Measurement	
Accuracy	Accuracy of a measurement is how close the measur- ement is to the true value.
Precision	Precision of measurements is how close they are to each other. The precision is determined by the number of decimal places.
Uncert- ainty Uncertainty is the natural variation in measurements associated with instruments Tolerance The total amount that a measurement is allowed to (Ғ) vary. Add or subtract Tolerance to Nominal Value.	
Nominal	The middle number that can be added or subtracted from to show the minimum or maximum value.

Tolerance: (Maximum Value - Minimum Value)/2
[Eg. $(130-120) / 2=\mp 5]$.
$125 \mp 5=(125-5=120)$ or $(125+5=130)$
Tolerance can have different maximum and minimum values.
Eg. $125(+5)(-3)=[125+5=130]$ or $[125-3=122]$

Measurement (continued)

Nominal Value: Minimum Value + Tolerance
Eg. $120+5=125$.

Precision: Lowest unit of measurement of the measuring device or the significant decimal place.
$87.32 \mathrm{~kg}=0.0>1<$.

Uncertainty: Because not all measuring devices are accurate, you include an error with the measurement.
(Smallest Measure/2) Eg. 0.1/2 $=\mp 0.05$

Central Tendency	
Statistics	Is based upon data collected. From that, inferences and speculations are made. It is reliant upon the data and the interpretation of the data.
Mean	The average of all data. The sum of all data, divided by the number of data.
Median	The set of values that is the middle of values arranged in ascending or descending order.
Even Median Formula	$X[\mathbf{n} / 2]+X[(\mathbf{n} / 2)+1]) / 2 .(\mathbf{n}=$ number of values $)(X=$ position of values)
Mode	The value that appears the most frequently.
Outlier	A piece of data that is significantly different from the rest.

$$
\begin{aligned}
& 5,7,8,8,8,9,10,12,13,14,15 \\
& \text { Mean: }(5+7+8+8+8+9+10+12+13+14+15) / 11=9.9=10 \\
& \text { Median }(\text { Odd }): \text { Middle value }=9 \\
& 5,7,8,8,8,9,10,12,13,14,15,35 \\
& \text { Median }(\text { Even }):(X[12 / 2]+(X[(12 / 2)+1] / 2 \\
& =(X[6]+X[6+1]) / 2 \\
& =(10+12) / 2 \\
& =22 / 2 \\
& =11 \\
& \text { Mode: } 8
\end{aligned}
$$

Other Statistical Measurements

Range The difference from the highest value to the lowest value in the data set.

By ArcelM4
cheatography.com/arcelm4/

Published 9th February, 2024.
Last updated 24th January, 2024.
Page 4 of 5 .

Sponsored by Readable.com

Measure your website readability! https://readable.com

Other Statistical Measurements (cont)

Trimmed Removing the highest and lowest values and calculating
Mean the mean so that data is accurately presented.

Weighted The average or mean of a data set in which each data Mean point does not contribute an equal amount to the final average.

Weighted Sum of the product of each item and its weight, divided
Mean by sum of the weightings
Formula
$5,7,8,8,8,9,10,12,13,14,15,35$

Trimmed Mean: Remove 5 and 35. $(7+8+8+8+9+10+12+13+14+1-$ 5) $/ 10=10.4$, rounded up $=10$

Weighted Mean: Will be in a diagram because I cannot figure out how to use cells.

Weighted Mean Diagram

By ArcelM4

cheatography.com/arcelm4/

Percentiles	
Percen- tiles	A value below which a certain percent of the data falls.
Percentile Rank	A percentile rank of 50 (usually written P50) is the median because 50% (or half) of the values in the set are below the median value.
Percentile Rank Formula	$P=(B / \mathbf{n})^{*} 100 . B$: The number of scores below a given score, \mathbf{n} : The number of scores. Always rounded to the nearest whole number
Stem Leaf Plot	A way to organize data in order of place value. The "tens digit and greater" is the stem and the "ones digit" is the leaf.
\wedge	Will show on a diagram because I cannot figure out cells.

Ron scores 82% on his biology exam. A total of 200 students who wrote the same exam. 135 scored lower than Ron. What is Ron's percentile rank?

```
P=(B/n) * 100
P=(135/200) * 100
P=(0.675) * 100
P=67.5
P=68th Percentile Rank
```


Stem Leaf Plot Diagram

The "tens digit and greater" is the stem and the "ones digit" is the leaf.

Published 9th February, 2024.
Last updated 24th January, 2024.
Page 5 of 5 .

Sponsored by Readable.com

Measure your website readability! https://readable.com

