
Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

The encoder branchThe encoder branch

BERT BERT is pretrained with the two objectives of predicting masked tokens in texts and determining if one text passage is likely to
follow another. The former task is called masked language modeling (MLM) and the latter next sentence prediction (NSP).

DistilBERT Although BERT delivers great results, it’s size can make it tricky to deploy in environments where low latencies are required. By
using a technique known as knowledge distillation during pretraining, DistilBERT achieves 97% of BERT’s performance while
using 40% less memory and being 60% faster. You can find more details on knowledge distillation in Chapter 8.

RoBERTa A study following the release of BERT revealed that its performance can be further improved by modifying the pretraining scheme.
RoBERTa is trained longer, on larger batches with more training data, and it drops the NSP task. Together, these changes signif‐
icantly improve its performance compared to the original BERT model.

XLM Several pretraining objectives for building multilingual models were explored in the work on the cross-lingual language model
(XLM), including the autoregressive language modeling from GPT-like models and MLM from BERT. In addition, the authors of the
paper on XLM pretraining introduced translation language modeling (TLM), which is an extension of MLM to multiple language
inputs. Experimenting with these pretraining tasks, they achieved state-of-the-art results on several multilingual NLU benchmarks
as well as on translation tasks.

XLM-Ro‐
BERTa

Following the work of XLM and RoBERTa, the XLM-RoBERTa or XLM-R model takes multilingual pretraining one step further by
massively upscaling the training data. Using the Common Crawl corpus, its developers created a dataset with 2.5 terabytes of text;
they then trained an encoder with MLM on this dataset. Since the dataset only contains data without parallel texts (i.e., translati‐
ons), the TLM objective of XLM was dropped. This approach beats XLM and multilingual BERT variants by a large margin,
especially on low-resource languages.

ALBERT The ALBERT model introduced three changes to make the encoder architecture more efficient. First, it decouples the token
embedding dimension from the hidden dimension, thus allowing the embedding dimension to be small and thereby saving parame‐
ters, especially when the vocabulary gets large. Second, all layers share the same parameters, which decreases the number of
effective parameters even further. Finally, the NSP objective is replaced with a sentence-ordering prediction: the model needs to
predict whether or not the order of two consecutive sentences was swapped rather than predicting if they belong together at all.
These changes make it possible to train even larger models with fewer parameters and reach superior performance on NLU
tasks.

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 1 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

The encoder branch (cont)The encoder branch (cont)

ELECTRA One limitation of the standard MLM pretraining objective is that at each training step only the representations of the masked tokens
are updated, while the other input tokens are not. To address this issue, ELECTRA uses a two-model approach: the first model
(which is typically small) works like a standard masked language model and predicts masked tokens. The second model, called
the discriminator, is then tasked to predict which of the tokens in the first model’s output were originally masked. Therefore, the
discriminator needs to make a binary classification for every token, which makes training 30 times more efficient. For downstream
tasks the discriminator is fine-tuned like a standard BERT model.

DeBERTa The DeBERTa model introduces two architectural changes. First, each token is represented as two vectors: one for the content,
the other for relative position. By disentangling the tokens’ content from their relative positions, the self-attention layers can better
model the dependency of nearby token pairs. On the other hand, the absolute position of a word is also important, especially for
decoding. For this reason, an absolute position embedding is added just before the softmax layer of the token decoding head.
DeBERTa is the first model (as an ensemble) to beat the human baseline on the SuperGLUE benchmark, a more difficult version of
GLUE consisting of several subtasks used to measure NLU performance.

BertBert

BertModel(
 (embeddings): BertEmbeddings(
 (word_embeddings): Embedding(30522, 768, padding_idx=0)
 (position_embeddings): Embedding(512, 768)
 (token_type_embeddings): Embedding(2, 768)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (encoder): BertEncoder(
 (layer): ModuleList(
 (0-11): 12 x BertLayer(
 (attention): BertAttention(
 (self): BertSelfAttention(
 (query): Linear(in_features=768, out_features=768, bias=True)
 (key): Linear(in_features=768, out_features=768, bias=True)
 (value): Linear(in_features=768, out_features=768, bias=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (output): BertSelfOutput(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 2 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

Bert (cont)Bert (cont)

>)
)
 (intermediate): BertIntermediate(
 (dense): Linear(in_features=768, out_features=3072, bias=True)
 (intermediate_act_fn): GELUActivation()
)
 (output): BertOutput(
 (dense): Linear(in_features=3072, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
 (pooler): BertPooler(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (activation): Tanh()
)
)

The Decoder BranchThe Decoder Branch

GPT The introduction of GPT combined two key ideas in NLP: the novel and efficient transformer decoder architecture, and transfer
learning. In that setup, the model was pretrained by predicting the next word based on the previous ones. The model was trained on
the BookCorpus and achieved great results on downstream tasks such as classification.

GPT-
2

Inspired by the success of the simple and scalable pretraining approach, the original model and training set were upscaled to produce
GPT-2. This model is able to produce long sequences of coherent text. Due to concerns about possible misuse, the model was
released in a staged fashion, with smaller models being published first and the full model later.

CTRL Models like GPT-2 can continue an input sequence (also called a prompt). However, the user has little control over the style of the
generated sequence. The Conditional Transformer Language (CTRL) model addresses this issue by adding “control tokens” at the
beginning of the sequence. These allow the style of the generated text to be controlled, which allows for diverse generation.

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 3 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

The Decoder Branch (cont)The Decoder Branch (cont)

GPT-
3

Following the success of scaling GPT up to GPT-2, a thorough analysis on the behavior of language models at different scales revealed
that there are simple power laws that govern the relation between compute, dataset size, model size, and the performance of a
language model. Inspired by these insights, GPT-2 was upscaled by a factor of 100 to yield GPT-3, with 175 billion parameters. Besides
being able to generate impressively realistic text passages, the model also exhibits few-shot learning capabilities: with a few examples
of a novel task such as translating text to code, the model is able to accomplish the task on new examples. OpenAI has not open-s‐
ourced this model, but provides an interface through the OpenAI API.

GPT-
Ne‐
o/G‐
PT-
J-6B

GPT-Neo and GPT-J-6B are GPT-like models that were trained by EleutherAI, a collective of researchers who aim to re-create and
release GPT-3 scale models. The current models are smaller variants of the full 175-billion-parameter model, with 1.3, 2.7, and 6 billion
parameters, and are competitive with the smaller GPT-3 models OpenAI offers. The final branch in the transformers tree of life is the
encoder-decoder models. Let’s take a look.

GPT2GPT2

GPT2Model(
 (wte): Embedding(50257, 768)
 (wpe): Embedding(1024, 768)
 (drop): Dropout(p=0.1, inplace=False)
 (h): ModuleList(
 (0-11): 12 x GPT2Block(
 (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
 (attn): GPT2Attention(
 (c_attn): Conv1D()
 (c_proj): Conv1D()
 (attn_dropout): Dropout(p=0.1, inplace=False)
 (resid_dropout): Dropout(p=0.1, inplace=False)
)
 (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
 (mlp): GPT2MLP(
 (c_fc): Conv1D()
 (c_proj): Conv1D()
 (act): NewGELUActivation()
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
 (ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 4 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

The Encoder-Decoder BranchThe Encoder-Decoder Branch

T5 The T5 model unifies all NLU and NLG tasks by converting them into text-to-text tasks. All tasks are framed as sequence-to-seq‐
uence tasks, 20 21 22 23 where adopting an encoder-decoder architecture is natural. For text classification problems, for example,
this means that the text is used as the encoder input and the decoder has to generate the label as normal text instead of a class. We
will look at this in more detail in Chapter 6. The T5 architecture uses the original Transformer architecture. Using the large crawled C4
dataset, the model is pretrained with masked language modeling as well as the SuperGLUE tasks by translating all of them to text-to-
text tasks. The largest model with 11 billion parameters yielded state-of-the-art results on several benchmarks.

BART BART combines the pretraining procedures of BERT and GPT within the encoder-decoder architecture. The input sequences undergo
one of several possible transformations, from simple masking to sentence permutation, token deletion, and document rotation. These
modified inputs are passed through the encoder, and the decoder has to reconstruct the original texts. This makes the model more
flexible as it is possible to use it for NLU as well as NLG tasks, and it achieves state-of-the-art- performance on both.

M2M-
100

Conventionally a translation model is built for one language pair and translation direction. Naturally, this does not scale to many
languages, and in addition there might be shared knowledge between language pairs that could be leveraged for translation between
rare languages. M2M- 100 is the first translation model that can translate between any of 100 languages. This allows for high-quality
translations between rare and underrepresented languages. The model uses prefix tokens (similar to the special [CLS] token) to
indicate the source and target language.

BigBird One main limitation of transformer models is the maximum context size, due to the quadratic memory requirements of the attention
mechanism. 24 25 BigBird addresses this issue by using a sparse form of attention that scales linearly. This allows for the drastic
scaling of contexts from 512 tokens in most BERT models to 4,096 in BigBird. This is especially useful in cases where long depend‐
encies need to be conserved, such as in text summarization.

BERT2BERTBERT2BERT

EncoderDecoderModel(
 (encoder): BertModel(
 (embeddings): BertEmbeddings(
 (word_embeddings): Embedding(30522, 768, padding_idx=0)
 (position_embeddings): Embedding(512, 768)
 (token_type_embeddings): Embedding(2, 768)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (encoder): BertEncoder(
 (layer): ModuleList(
 (0-11): 12 x BertLayer(

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 5 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

BERT2BERT (cont)BERT2BERT (cont)

> (attention): BertAttention(
 (self): BertSelfAttention(
 (query): Linear(in_features=768, out_features=768, bias=True)
 (key): Linear(in_features=768, out_features=768, bias=True)
 (value): Linear(in_features=768, out_features=768, bias=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (output): BertSelfOutput(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
 (intermediate): BertIntermediate(
 (dense): Linear(in_features=768, out_features=3072, bias=True)
 (intermediate_act_fn): GELUActivation()
)
 (output): BertOutput(
 (dense): Linear(in_features=3072, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
 (pooler): BertPooler(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (activation): Tanh()
)
)
 (decoder): BertLMHeadModel(
 (bert): BertModel(
 (embeddings): BertEmbeddings(
 (word_embeddings): Embedding(30522, 768, padding_idx=0)
 (position_embeddings): Embedding(512, 768)
 (token_type_embeddings): Embedding(2, 768)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (encoder): BertEncoder(
 (layer): ModuleList(
 (0-11): 12 x BertLayer(
 (attention): BertAttention(

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 6 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

BERT2BERT (cont)BERT2BERT (cont)

> (self): BertSelfAttention(
 (query): Linear(in_features=768, out_features=768, bias=True)
 (key): Linear(in_features=768, out_features=768, bias=True)
 (value): Linear(in_features=768, out_features=768, bias=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (output): BertSelfOutput(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
 (crossattention): BertAttention(
 (self): BertSelfAttention(
 (query): Linear(in_features=768, out_features=768, bias=True)
 (key): Linear(in_features=768, out_features=768, bias=True)
 (value): Linear(in_features=768, out_features=768, bias=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (output): BertSelfOutput(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
 (intermediate): BertIntermediate(
 (dense): Linear(in_features=768, out_features=3072, bias=True)
 (intermediate_act_fn): GELUActivation()
)
 (output): BertOutput(
 (dense): Linear(in_features=3072, out_features=768, bias=True)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
)
 (cls): BertOnlyMLMHead(
 (predictions): BertLMPredictionHead(
 (transform): BertPredictionHeadTransform(
 (dense): Linear(in_features=768, out_features=768, bias=True)
 (transform_act_fn): GELUActivation()

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 7 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

BERT2BERT (cont)BERT2BERT (cont)

> (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
 (decoder): Linear(in_features=768, out_features=30522, bias=True)
)
)
)
)
Process finished with exit code 0

T5T5

T5Model(
 (shared): Embedding(32128, 768)
 (encoder): T5Stack(
 (embed_tokens): Embedding(32128, 768)
 (block): ModuleList(
 (0): T5Block(
 (layer): ModuleList(
 (0): T5LayerSelfAttention(
 (SelfAttention): T5Attention(
 (q): Linear(in_features=768, out_features=768, bias=False)
 (k): Linear(in_features=768, out_features=768, bias=False)
 (v): Linear(in_features=768, out_features=768, bias=False)
 (o): Linear(in_features=768, out_features=768, bias=False)
 (relative_attention_bias): Embedding(32, 12)
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
 (1): T5LayerFF(
 (DenseReluDense): T5DenseActDense(
 (wi): Linear(in_features=768, out_features=3072, bias=False)
 (wo): Linear(in_features=3072, out_features=768, bias=False)
 (dropout): Dropout(p=0.1, inplace=False)
 (act): ReLU()
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
 (1-11): 11 x T5Block(
 (layer): ModuleList(
 (0): T5LayerSelfAttention(
 (SelfAttention): T5Attention(

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 8 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

T5 (cont)T5 (cont)

> (q): Linear(in_features=768, out_features=768, bias=False)
 (k): Linear(in_features=768, out_features=768, bias=False)
 (v): Linear(in_features=768, out_features=768, bias=False)
 (o): Linear(in_features=768, out_features=768, bias=False)
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
 (1): T5LayerFF(
 (DenseReluDense): T5DenseActDense(
 (wi): Linear(in_features=768, out_features=3072, bias=False)
 (wo): Linear(in_features=3072, out_features=768, bias=False)
 (dropout): Dropout(p=0.1, inplace=False)
 (act): ReLU()
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
 (final_layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
 (decoder): T5Stack(
 (embed_tokens): Embedding(32128, 768)
 (block): ModuleList(
 (0): T5Block(
 (layer): ModuleList(
 (0): T5LayerSelfAttention(
 (SelfAttention): T5Attention(
 (q): Linear(in_features=768, out_features=768, bias=False)
 (k): Linear(in_features=768, out_features=768, bias=False)
 (v): Linear(in_features=768, out_features=768, bias=False)
 (o): Linear(in_features=768, out_features=768, bias=False)
 (relative_attention_bias): Embedding(32, 12)
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
 (1): T5LayerCrossAttention(
 (EncDecAttention): T5Attention(
 (q): Linear(in_features=768, out_features=768, bias=False)

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 9 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

T5 (cont)T5 (cont)

> (k): Linear(in_features=768, out_features=768, bias=False)
 (v): Linear(in_features=768, out_features=768, bias=False)
 (o): Linear(in_features=768, out_features=768, bias=False)
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
 (2): T5LayerFF(
 (DenseReluDense): T5DenseActDense(
 (wi): Linear(in_features=768, out_features=3072, bias=False)
 (wo): Linear(in_features=3072, out_features=768, bias=False)
 (dropout): Dropout(p=0.1, inplace=False)
 (act): ReLU()
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
 (1-11): 11 x T5Block(
 (layer): ModuleList(
 (0): T5LayerSelfAttention(
 (SelfAttention): T5Attention(
 (q): Linear(in_features=768, out_features=768, bias=False)
 (k): Linear(in_features=768, out_features=768, bias=False)
 (v): Linear(in_features=768, out_features=768, bias=False)
 (o): Linear(in_features=768, out_features=768, bias=False)
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
 (1): T5LayerCrossAttention(
 (EncDecAttention): T5Attention(
 (q): Linear(in_features=768, out_features=768, bias=False)
 (k): Linear(in_features=768, out_features=768, bias=False)
 (v): Linear(in_features=768, out_features=768, bias=False)
 (o): Linear(in_features=768, out_features=768, bias=False)
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
 (2): T5LayerFF(
 (DenseReluDense): T5DenseActDense(

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 10 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

Transformers Classification Cheat Sheet
by aoi-dev via cheatography.com/160438/cs/38602/

T5 (cont)T5 (cont)

> (wi): Linear(in_features=768, out_features=3072, bias=False)
 (wo): Linear(in_features=3072, out_features=768, bias=False)
 (dropout): Dropout(p=0.1, inplace=False)
 (act): ReLU()
)
 (layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
 (final_layer_norm): T5LayerNorm()
 (dropout): Dropout(p=0.1, inplace=False)
)
)

By aoi-devaoi-dev
cheatography.com/aoi-dev/

Not published yet.
Last updated 15th May, 2023.
Page 11 of 11.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/aoi-dev/
http://www.cheatography.com/aoi-dev/cheat-sheets/transformers-classification
http://www.cheatography.com/aoi-dev/
https://readable.com

	Transformers Classification Cheat Sheet - Page 1
	The encoder branch

	Transformers Classification Cheat Sheet - Page 2
	Bert

	Transformers Classification Cheat Sheet - Page 3
	The Decoder Branch

	Transformers Classification Cheat Sheet - Page 4
	GPT2

	Transformers Classification Cheat Sheet - Page 5
	The Encoder-Decoder Branch
	BERT2BERT

	Transformers Classification Cheat Sheet - Page 6
	Transformers Classification Cheat Sheet - Page 7
	Transformers Classification Cheat Sheet - Page 8
	T5

	Transformers Classification Cheat Sheet - Page 9
	Transformers Classification Cheat Sheet - Page 10
	Transformers Classification Cheat Sheet - Page 11

