Cheatography

IAL Chem Unit 4 Kinetics Cheat Sheet by anupamabalaji via cheatography.com/213395/cs/46424/

Key Definitions			
Term	Definition		
Rate of Reaction	Change in concentration of a reactant or product per unit time.		
Rate Equation	Rate = $k [A]^m [B]^n$ where m, n are the orders of the reaction.		
Order of Reaction	The power to which the concentration of a reactant is raised in the rate law		
Overall Order	The sum of the powers (orders) of all reactants in the rate equation. Order = m+n.		
Half-life $(t_{1/2})$	Time taken for the concentration of a reactant to fall to half its value.		
Rate Constant (k)	Proportionality constant in the rate equation; depends on temperature.		
Activation Energy (E _a)	Minimum energy needed for a reaction to occur.		
Adsorption	The binding of molecules to a surface (such as a catalyst), which increases reaction rate.		
Desorption	The release of products from a catalyst surface after the reaction.		

Arrhenius Equation

k=Ae^{Ea/RT}

Where

- k = Chemical Reaction Rate
- A = Pre-exponential factor E_a = Activation Energy
- R = Gas Constant
- T = Temperature in Kelvin

By anupamabalaji

Published 22nd May, 2025. Last updated 22nd May, 2025. Page 1 of 2.

Mechanisms: SN1 vs SN2				
Feature	SN1	SN2		
Steps	2 steps (carbocation formed)	1 step (simultaneous attack/leave)		
Reactivity	Tertiary haloalkanes	Primary haloalkanes		
Rate Law	rate = k[haloalkane]	rate = k[haloalkane][Nu⁻]		
Steric Hindrance	Low (carbocation intermediate)	High (due to nucleophile approach)		

SN1 & SN2

Experimental Techniques					
Method	Measurement	Used For			
Mass loss	Decreasing mass (gas released)	Rate of gas-producing reactions			
Volume of gas	Gas syringe / upside-down cylinder	Gas evolution			
Titration	Concentration vs time	Accurate kinetic data			
Colori- metry	Absorbance vs concen- tration	Colored species (e.g. l ₂ reaction)			
Rate Laws & Integrated Rate Equations					
Order	Rate Law	Half-life			
Zero	rate = k	$t_{1/2} = [A]_0 / 2k$			

Order	Rate Law	Half-life
Zero	rate = k	$t_{1/2} = [A]_0 / 2k$
First	rate = k[A]	$t_{1/2} = \ln 2 / k$
Second	rate = $k[A]^2$	$t_{\gamma_2} = 1 / (k[A]_0)$

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/anupamabalaji/

Cheatography

IAL Chem Unit 4 Kinetics Cheat Sheet by anupamabalaji via cheatography.com/213395/cs/46424/

Half Life

Rate Determining Step (RDS)

- 1. The slowest step in a mechanism controls the overall rate.
- 2. Only species involved up to RDS appear in the rate equation.
- 3. Powers in rate law = number of molecules in RDS.

Catalysis					
Туре	Phase	Example	Notes		
Homoge neous	Same as reactants	Fe²+/Fe³+ in S₂O8²- + I⁻	Catalyst regenerated via redox steps		
Hetero- geneous	Different from reactants	Fe in Haber process	Provides surface, weakens bonds, speeds reaction		

Catalysts lower the activation energy of a reaction by providing an alternate reaction route.

By **anupamabalaji**

Published 22nd May, 2025. Last updated 22nd May, 2025. Page 2 of 2. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Adsorption (in Heterogeneous Catalysis)

Adsorption is when reactant molecules bind to active sites on the surface of a solid catalyst.

This:

- 1. Brings molecules close together, increasing collision frequency
- 2. Weakens bonds in the reactants, lowering activation energy
- 3. Allows for a faster reaction

After the reaction, products desorb (leave) from the surface, freeing the site for reuse.

cheatography.com/anupamabalaji/