

IAL Chem Unit 4 Entropy and Energetics Cheat Sheet by anupamabalaji via cheatography.com/213395/cs/46426/

Key Terms and Definitions				
Term	Definition			
Entropy (∆S)	A measure of the disorder in a system. Units: J $$\rm K^{\text{-}1}\ mol^{\text{-}1}$$			
Standard Entropy Change (△S°)	$\Delta S^{o} = \Sigma S^{o}(products) - \Sigma S^{o}(reactants)$			
Spontaneous Process	A process where $\Delta G < 0$; can occur without external input.			
Gibbs Free Energy (∆G)	The energy available to do work: $\Delta G = \Delta H - T\Delta S$			
Lattice Enthalpy of Formation (ΔH^oLE)	Enthalpy change when 1 mole of an ionic solid forms from its gaseous ions (exothermic).			
Lattice Enthalpy of Dissociation	Enthalpy change when 1 mole of ionic solid dissociates into gaseous ions (endothermic).			
Atomisation Enthalpy (∆H ^o at)	Enthalpy change to form 1 mole of gaseous atoms from the element.			
Electron Affinity (∆H ^o ea)	Enthalpy change when 1 mol of electrons is added to 1 mole of gaseous atoms to form 1-ions.			
Hydration Enthalpy (∆H⁰hyd)	Enthalpy change when gaseous ions dissolve in water to form aqueous ions.			

Key Terms and Definitions (cont)			
Solution Enthalpy (ΔH° _{SOI})	Enthalpy change when 1 mol of solute dissolves to infinite dilution.		
Perfect Ionic Model	Assumes ions are spherical and charge is evenly distributed with no covalent character.		

Entropy Effect		
Change	Entropy Effect	
Melting / Boiling	Entropy increases significantly	
Dissolving ionic lattice	Entropy increases	
Increase in gas moles in products	Entropy increases	
Cooling a gas	Entropy decreases	
Formation of solid from gas	Entropy decreases significantly	

Equation: $\Delta G = -\Delta S \cdot T + \Delta H$ (y = mx + c)

Slope = $-\Delta S$ Y-intercept = ΔH

C

By anupamabalaji

Not published yet. Last updated 22nd May, 2025. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/anupamabalaji/

IAL Chem Unit 4 Entropy and Energetics Cheat Sheet by anupamabalaji via cheatography.com/213395/cs/46426/

occur due to:

Kinetics vs. Thermodynamics

- Slow reaction rate due to kinetic barriers

- High activation energy

A reaction may be thermodynamically feasible ($\triangle G < 0$) but may not

Key Formulas

- \mathscr{O} Overall Entropy of a system $\Delta S_{total} = \Delta S_{system} + \Delta S_{surroundings}$
- \mathscr{D} Entropy of surroundings $\Delta S_{surroundings} = -\Delta H/T$

 $\Delta S^{\circ}_{system} = \Sigma S^{\circ}_{products} - \Sigma S^{\circ}_{reactants}$

If entropy change is +ve, products more disordered than reactants (natural direction of change)

& if entropy change is -ve, reactants more disordered than products.

- ∅ Gibbs Free Energy ΔG=ΔH-TΔS_{system}
- ∆G: Gibbs free energy (kJ·mol⁻¹)
- ∆H: Enthalpy change (kJ·mol⁻¹)
- T: Temperature (K)
- ∆S: Entropy change (J·K⁻¹·mol⁻¹; convert to kJ by dividing by 1000)

A reaction is feasible when: $\Delta G < 0$

To find minimum temperature for spontaneity: $\Delta G = 0 \Rightarrow T =$

ΔH/ΔS_{system}

For lattice formation enthalpy:

 $\Delta H^{\circ}_{f} = \Sigma$ enthalpies (atomisation, ionisation, electron affinity, etc.) +

ΔHı =

 \mathscr{S} Hydration & Solution Enthalpy (Hess's Cycle) $\Delta H_{SOI} = \sum \Delta H^{\circ} - \sum \Delta H^{\circ}$

 ΔH° LE

Factors Affecting	Lattice & F	Hydration	Enthalpies
-------------------	-------------	-----------	------------

Factor	Effect on ∆H (more negative)
Smaller ionic radius	Increases attraction → More negative ∆H
Higher ionic charge	Increases attraction \rightarrow More negative ΔH

C

energy

By anupamabalaji

Higher ionic charge Increases attraction

→ More negative ∆H Greater hydration

Not published yet. Last updated 22nd May, 2025. Page 2 of 2.

Stronger interactions

with water \rightarrow More negative ΔH

cheatography.com/anupamabalaji/

Sponsored by Readable.com

Measure your website readability!

https://readable.com