Cheatography

Chapter 17 Bio Study Guide Cheat Sheet by annadanpd via cheatography.com/32659/cs/10101/

Gene to Protein

inherited DNA leads to specific traits by dictating the synthesis of proteins

From Gene to Protein (cont.)

Gene	process by which DNA directs
expres	protein synthesis (2 stages)
sion	
Transc	the synthesis of RNA using a DNA
ription	template
Transla	the synthesis of a polypeptide using
tion	the genetic information encoded in
	mRNA (nucleotides to amino acids)

Achibald Garrod

inborn	inherited diseases when a person
errors of	can't make a specific enzyme (no
metaboli	gene for enzyme bc of mutation)
sm	
ex.	alkaptonura
	pee is black because no enzyme

exists to break down alkapton

Beadle and Tatum

one gene-one	gene dictates the specific
polypeptide	production of an enzyme
hypothesis	

(gene codes for a polypeptide aka protein aka enzyme)

DNA vs. RNA		
	DNA	RNA
strands	double and anti-parallel	single
3 part of nucleotides: 5-C sugar:	deoxyribose	ribose
phosphate group:	present	present
nitrogenous base	C, G, A, T	C, G, A, U

3 Types of RNA

mRNA	synthesized using DNA template, attaches to ribosome in cytoplasm and specifies the primary structure of protein
rRNA	moleculesand proteins make up the ribosomes
tRNA	translates between nucleic acid (DNA) and protein lang. by carrying specific amino acids to ribosome, where they recognize the appropriate codons in the mRNA

PROTEINS ARE ASSEMBLED ON RIBOSOMES

TRANSCRIPTION is DNA-directed synthesis of RNA

eukaryotes	nucleus (where DNA is)
prokaryotes	cytoplasm
RNA	binds to DNA and separates
polymerase	DINA Stratius
II	

pastes complimentary RNA nucleotides to one side of DNA strand

= messenger RNA

RNA polymerase DOES NOT need a primer

Transcription (cont.)

promoter	DNA sequence where RNA polymerase II starts transcribing
terminat or	DNA sequence where RNA polymerase II stops transcribing
transcrip tion unit	the entire stretch of DNA transcribed in mRNA

3 Stages of Transcription:

iati- on	promoter, the DNA unwinds and initiates RNA synthesis
	prokaryotes do this themselves
	eukaryotes use proteins called transcription factors to assist bind of RNA polymerase to strand

init after RNA polymerase binds to the

3 Stages of Transcription: (cont)

	TATA box helps position mRNA
	polymerase
-	RNA polymerase moves downstream, unwinding and elongating

Term polymerase transcribes a sequence in inati DNA signaling end, RNA transcript is on released, polymerase detaches from DNA

DINA

Elon-

gatio n

Modifying mRNA after Transcription

ends of pre-mRNA molecule are modified before leaving the nucleus

	enzyme of protein = ribozymes
RNA splicing signals are at both ends of an INTRON	protein spliceosome snips out intron from transcript
	INTRONS are cut out, while EXONS are spliced together by RNA splicing
RNA is made of :	exons (expresses code) and introns <i>from DNA</i>
poly-A tail	3' end gets adenine nucleotides
GTP cap	5' end receives guanine triphosphate cap

Genetic Code

DNA and RNA	polymers of nucleotides
nucleotides differ in bases	A,T,C,G vs. A,U,C,G
Genetic code	'language' of mRNA instructions
codon	mRNA, 3-letter word
	3 nucleotide that code for an amino acid
UCG =	amino acid methionine
proteins	amino acids join in polypeptide

ALL proteins have a start (AUG) and terminator codon

cheatography.com/annadanpd/

Published 6th December, 2016. Last updated 6th December, 2016. Page 1 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Chapter 17 Bio Study Guide Cheat Sheet by annadanpd via cheatography.com/32659/cs/10101/

Translation	
prokaryote s & eukaryotes	cytoplasm on the ribosome
mRNA	left nucleus, now in cytoplasm, binds to ribosome
rRNA	ribosome composed of rRNA and protein; adds amino acids to polypeptide chain
- 3 binding sites:	A site: holds the tRNA that carries the next amino acid
	P site : holds the tRNA that carries the growing polypeptide chain
	E site: exit site for tRNA
tRNA	transfers amino acids to ribosome
	other end of tRNA has anti- codon

Mutations (cont.)

insertion and deletion - addition / loss of nucleotide pairs, can cause *frameshift*, mRNA read wrong

mutagens - forces that interact with DNA in ways that cause mutation

ex. x-rays

REMEMBER:

- most genes only contain instructions for assembling proteins
- many proteins = enzyme
- can control color of a flower

polyribosomes

mRNA can be translated simultaneously by several ribosomes

- reference drawing for explanation -

transcription / translation of BACTERIA cells occurs at same time because they're both in the CYTOPLASM

Mutations

alteration in the genetic information of a cell

point mutation - affects one nucleotide pair

nucleotide-pair substitution - replacement of one nucleotide and it's complementary base pair in DNA

- 1. **silent mutations** do not change amino acid translation
- 2. **missense mutation** substitution when a codon still codes for an amino acid
- 3. **nonsense mutations** substitutions when a regular amino acid codon is changed into a stop codon, ending translation

Published 6th December, 2016. Last updated 6th December, 2016. Page 2 of 2.