Cheatography

Chapter 17 Bio Study Guide Cheat Sheet by annadanpd via cheatography.com/32659/cs/10101/

Gene to Protein

inherited DNA leads to specific traits by dictating the synthesis of proteins

From Gene to Protein (cont.)	
Gene expres sion	process by which DNA directs protein synthesis (2 stages)
Transc ription	the synthesis of RNA using a DNA template
Transla tion	the synthesis of a polypeptide using the genetic information encoded in mRNA. (nucleotides to amino acids)

Beadle and Tatum	
one gene-one	gene dictates the specific
polypeptide	production of an enzyme
hypothesis	
	(gene codes for a

(gene codes for a polypeptide aka protein aka enzyme)

DNA vs. RNA		
	DNA	RNA
strands	double and anti-parallel	single
3 part of nucleotides: 5-C sugar:	deoxyribose	ribose
phosphate group:	present	present
nitrogenous base	C, G, A, T	C, G, A, U

3 Types of RNA

mRNA	synthesized using DNA template, attaches to ribosome in cytoplasm and specifies the primary structure of protein
rRNA	moleculesand proteins make up the ribosomes
tRNA	translates between nucleic acid (DNA) and protein lang. by carrying specific amino acids to ribosome, where they recognize the appropriate codons in the mRNA
PROTEINS ARE ASSEMBLED ON RIBOSOMES	

TRANSCRIPT of RNA	TION is DNA-directed synthesis
eukaryotes	nucleus (where DNA is)
prokaryotes	cytoplasm
RNA polymerase II	binds to DNA and separates DNA strands
	pastes complimentary RNA nucleotides to one side of DNA strand
	= messenger RNA

RNA polymerase DOES NOT need a primer

Transcription (cont.)

promoter	DNA sequence where RNA polymerase II starts transcribing
terminat or	DNA sequence where RNA polymerase II stops transcribing
transcrip tion unit	the entire stretch of DNA transcribed in mRNA

3 Stages of Transcription:

init after RNA polymerase binds to theiati- promoter, the DNA unwinds and initiateson RNA synthesis

prokaryotes do this themselves

eukaryotes use proteins called transcription factors to assist bind of RNA polymerase to strand

Published 6th December, 2016. Last updated 6th December, 2016. Page 1 of 2.

3 Stages of Transcription: (cont)

	TATA box helps position mRNA polymerase
Elon- gatio- n	RNA polymerase moves downstream, unwinding and elongating
Term inati on	polymerase transcribes a sequence in DNA signaling end, RNA transcript is released, polymerase detaches from DNA

Modifying mRNA after Transcription

ends of pre-mRNA molecule are modified before leaving the nucleus

GTP cap	5' end receives guanine triphosphate cap
poly-A tail	3' end gets adenine nucleotides
RNA is made of :	exons (expresses code) and introns from DNA
	INTRONS are cut out, while EXONS are spliced together by RNA splicing
RNA splicing signals are at both ends of an INTRON	protein spliceosome snips out intron from transcript
	enzyme of protein = ribozymes

Genetic Code	
DNA and RNA	polymers of <i>nucleotides</i>
nucleotides differ in bases	A,T,C,G vs. A,U,C,G
Genetic code	'language' of mRNA instructions
codon	mRNA, 3-letter word
	3 nucleotide that code for an <i>amino acid</i>
UCG =	amino acid methionine
proteins	amino acids join in polypeptide
ALL proteins have a start (AUG) and terminator codon	

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

```
By annadanpd
```

cheatography.com/annadanpd/

Cheatography

Chapter 17 Bio Study Guide Cheat Sheet by annadanpd via cheatography.com/32659/cs/10101/

insertion and deletion - addition / loss of nucleotide pairs, can cause *frameshift*, mRNA

mutagens - forces that interact with DNA in

- most genes only contain instructions for

Mutations (cont.)

ways that cause mutation

assembling proteins - many proteins = enzyme - can control color of a flower

read wrong

ex. x-rays REMEMBER:

Translation	
prokaryote s & eukaryotes	cytoplasm on the ribosome
mRNA	left nucleus, now in cytoplasm, <i>binds to ribosome</i>
rRNA	ribosome composed of rRNA and protein; adds amino acids to polypeptide chain
- 3 binding	A site: holds the tRNA that
sites:	carries the next amino acid
	P site: holds the tRNA that carries
	the growing polypeptide chain
	E site: exit site for tRNA
tRNA	transfers amino acids to ribosome
	other end of tRNA has anti- codon

- reference drawing for explanation -

polyribosomes

mRNA can be translated simultaneously by *several* ribosomes

transcription / translation of BACTERIA cells occurs at same time because they're both in the CYTOPLASM

Mutations

alteration in the genetic information of a cell

point mutation - affects one nucleotide pair

nucleotide-pair substitution - replacement of one nucleotide and it's complementary base pair in DNA

1. **silent mutations** do not change amino acid translation

2. **missense mutation** substitution when a codon still codes for an amino acid

3. **nonsense mutations** - substitutions when a regular amino acid codon is changed into a stop codon, ending translation

By annadanpd cheatography.com/annadanpd/

Published 6th December, 2016. Last updated 6th December, 2016. Page 2 of 2. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com