Cheatography

AP Bio Chpt. 17 Cheat Sheet by annadanpd via cheatography.com/32659/cs/10090/

DNA transforms Bacteria

Frederick Griffith studied two strains of pneumonia	pathogenic and nonpathogenic
heat-killed pathogenic + nonpathogenic bacteria	= pathogenic bacteria (live disease-causing)
transformation	change in genotype and phenotype due to assimilation of external DNA by a cell
scientists studied to	o find the genetic material of

cientists studied to find the genetic material of chromosomes - protein vs. DNA

DNA transforms Bacteria (cont.)

Oswald Avery also proved that DNA was the molecule that transformed bacteria

Viruses

DNA or RNA in	infect by taking over a cell's
a protein coat	metabolic machinery
Bacteriophages	viruses that infect bacteria

Henry and Chase showed that DNA was the genetic material that infected the bacteria

Used radioactive isotope markers to label DNA and proteins of phages. Phage DNA entered the bacteria cell, but protein did not.

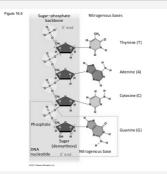
Chargaff's Rule

concentration of ... [A] = [T] [C] = [G]

Rosalind Franklin

x-ray	image of DNA produced by x-rays
crystallo	diffracting when passing through
graphy	DNA fibers

By annadanpd


cheatography.com/annadanpd/

Rosalind Franklin (cont)

DNA is a double helix, with two anti-parallel sugar-phosphate backbones, and nitrogenous bases in the molecule's interior

anti-parallel - subunits run in opposite directions

DNA is a polymer of nucleotides

components: nitrogenous base, deoxyribose sugar, phosphate group bases: adenine, guanine, thymine, cytosine

Structure of DNA

DNA is a polymer of nucleotides connected by covalent bonds

4 nitrogen ous bases:	Purines (double ring) [A] [G]	Pyrimidines (single ring) - [C] [T]
DNA base pairing	PURINE always pairs with PYRIMIDINE	2 of the same would be too wide/narrow
2 hudragan handa hatwaan C and C		

3 hydrogen bonds between C and G

2 hydrogen bonds between A and T

DNA Replication

S phase of Interphase

DNA made from existing DNA strand

semiconser	one parent strand serves as a
vative	template to a complementary
model	strand
	half of parent strand is

conserved in each daughter strand

Meselson and Stahl

Published 6th December, 2016. Last updated 6th December, 2016. Page 1 of 2.

DNA Replication (cont.)

origins of replication	where replication of DNA molecule begins
bacterial chromosome	circular, <i>single</i> origin
eukaryotic chromosome	linear, thousands of origins
replication fork	Y-shaped region formed by unwinding of parent strands
- reference dra	wings to understanding rest of

replication -

Proofreading DNA

DNA polymera se	proofreads each nucleotide as it's covalently bonded
mismatch repair	other enzymes remove and repair incorrect nucleotides
nucleotid e excision repair	mutated strand is cut out by enzyme nuclease , and the gap is filled with DNA polymerase and ligase

- seen in skin cells when correcting thymine dimmers cause by UV rays

Evolution Significance of DNA Nucleotides

Mutations occur when uncorrected mismatched nucleotides are replicated and passed onto a daughter cell. Usually harmful and permanent genetic changes that support natural selection.

Replication at Molecule Ends

- reference drawings -

Sponsored by Readability-Score.com Measure your website readability! https://readability-score.com

Cheatography

AP Bio Chpt. 17 Cheat Sheet by annadanpd via cheatography.com/32659/cs/10090/

inside à chilomosome	Inside a	Chromosome
----------------------	----------	------------

eukaryotic	one long DNA double helix with large	chroma
cell	amnt. of protein =	tin
the long DNA fits in the nucleus through packing		

- reference drawings -

By annadanpd

cheatography.com/annadanpd/

Published 6th December, 2016. Last updated 6th December, 2016. Page 2 of 2. Sponsored by **Readability-Score.com** Measure your website readability!

https://readability-score.com