Cheatography

Machine Learning and Optimization Cheat Sheet by anlumithe via cheatography.com/177005/cs/36970/

Linear Algebra				
A+B	has result, only if A and B have same dim			
A x =x_1* a_1 ++x_n* a_n	result is vector			
A*B	row of A times column of B, result is matrix			
A ^T	row becomes column and vice versa			
Properties of transpose	(1) if A is (m x n) A^{T} is (n x m) (2) $(A^{T})^{T}=A$ (3) $(A+B)^{T}=A^{T}+B^{T}$ (4) $(AB)^{T} = B^{T}A^{T}$ (5) $(tA)^{T}=tA^{T}$			
Inverse of Matrix	AA ⁻¹ =I=A ⁻¹ A			
Properties of invertible matrix	$(A^{-1})^{-1} = A$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^{T})^{-1} = (A^{-1})^{T}$			
Singular value decomposition	A = $U\Sigma V^{T}$ what means that every vector-matrix-m- ultiplication can be viewed as a 3 step process (1) rotation into space V (2) scaling by singular value			
	(2) scaling by singular value(3) rotation into new space U			
Eigen value decomp- osition	A = QAQ ⁻¹ this is only possible, if A <i>and</i> Q are square matrices			

Linear regression	
Model	$y = X\theta^* + z$
Risk	
Ridge regression	
Logistic Regression	
Support Vector Machines	

Neuronal Networks

By anlumithe

cheatography.com/anlumithe/

Not published yet. Last updated 8th February, 2023. Page 1 of 1. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com