Cheatography

One and two dimensional motion by anjuscha via cheatography.com/125991/cs/24592/

Speed and	I Velocity	Speed a
speed	the distance traveled per unit of time. Speed is a scalar, a quantity that is described by magnitude alone. Constant speed refers to a fixed distance	Motion and referenc frame
	per unit of time. Average speed includes the total distance and total time.	average velocity
velocity	the displacement of an object per unit of time. Since displa- cement includes a direction, so does velocity. Speed with direction. Velocity is a vector a quantity that has both magnitude and direction.	change
vector	a quantity that has both magnitude and direction	direction
reference frame	the position from which an event is observed	
motion map	an image that represents the position, velocity, and accele- ration of an object at one- second intervals	
scalar	a quantity that is described by magnitude alone	

Speed and Velocity (cont)

Notion Ind eference rame	All motion is relative. It depends on a reference frame. An object may appear to move faster or slower depending on the reference frame.
verage elocity	The slope of a line changes when the velocity of an object changes -> The steeper the slope, the greater the velocity. The average velocity will be different than any of the other. Any point on the line will give only an instantaneous velocity.
hange 1 lirection	A change in direction is repres- ented when the line on a positi- on-time graph changes from a positive slope to a negative. slope or from a negative slope to a positive slope. A negative slope indicates an object moving towards the origin. A positive slope indicates an object moving away from the origin.

Speed and Velocity (cont)

No	horizontal line - means object is
motion	not moving -> The object's
	position does not change
Motion	Displayed in a vector !
Formula	
speed	s = d/t -> 50 + 30 = 80 miles, 1+1
	= 2h -> 80 miles/2h = 40 mph
velocity	$v = \Delta x/t$
average	v avg = $\Delta x/\Delta t$ = xf - xi/tf - ti ->
velocity	100 m in 10.61 s -> xf = 100 m,

xi = 0 m, tf = 10.61 s, ti = 0 s -> v
avg = 100 m - 0 m / 10.61 s - 0 s
= 100/10.61 = 9.43 m/s

Accelerati	on
positive accele- ration	an increase in velocity over time
negative accele- ration	a decrease in velocity over time
accele-	the rate at which velocity
ration	changes over time
constant	staying the same; unchanging
Positive accele- ration	speeds up in the positive direction. slows down in the negative direction

By anjuscha

cheatography.com/anjuscha/

Published 1st October, 2020. Last updated 1st October, 2020. Page 1 of 3.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

One and two dimensional motion by anjuscha via cheatography.com/125991/cs/24592/

Acceleration (cont)Negativeslow down down in the positive
direction. speeds up in the
negative direction.Slopeof the line on a velocity vs. time
graph represents acceleration,
Positive slope = acceleration,
negative slope = negative
acceleration

acceleration

Displacement during constant acceleration

Displacement during constant velocity	$\Delta x = vt$
Displacement during acceleration	$\Delta x = \frac{1}{2} (v_j - v_i) t$
Total displacement is the sum of the two	$\Delta x = v_i t + \frac{1}{2} (v_i - v_i) t$
Terms are combined	$\Delta x = \frac{1}{2} (v_j + v_j) t$
When the initial position is not zero	$x_{j} = x_{i} + \frac{1}{2}(v_{j} + v_{i})t$

Formula

Two vectors added at a right angle (90°)	$R^2 = A^2 + B^2$
Magnitude and sign of component vectors	$\begin{array}{l} A_{x}=A\cos\theta\\ A_{y}=A\sin\theta \end{array}$
Magnitude of the resultant vector	$R^2 = R_x^2 + R_y^2$
Angle or direction of the resultant vector	$\tan \theta = \boxed{\frac{R_{y}}{R_{x}}}$

By anjuscha

cheatography.com/anjuscha/

Horizontal motion example

Key concepts

Review: Key concepts ontally Launched Projectile Projectile Launched at an Angle $v_{\mu} = v_{\mu} = v_{\mu} \cos\theta = \text{constant}$ constant iorizonta Motion $v_x =$ $\Delta x = (v_i \cos \theta) \Delta t$ $\Delta x = v_s \Delta t$ $v_{fy} = v_i \sin\theta + a_y \Delta t$ $v_y = a_y \Delta t$ $v_y^2 = 2a_y \Delta y$ $v_{b^2} = v_i^2 (\sin\theta)^2 + 2a_y \Delta y$ Vertica Motion $\frac{1}{2}a_{y}$ $(\Delta t)^2$ $\Delta y = (v_i \sin \theta) \Delta t + \frac{1}{2} a_y (\Delta t)^2$

a quarter of the coordinate plane
the two parts of a vector that are perpendicular to each other
the sum of two or more vectors
the process by which the components of a vector are determined
A vector is a quantity that has both magnitude and direction. Examples of vectors: Displacement, velocity, acceleration. Vectors are drawn using an arrow

Published 1st October, 2020. Last updated 1st October, 2020. Page 2 of 3.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Sign of a component

Magnitude of the Resultant Vector

More

The sign of a component depends on the quadrant of the coordinate system it is in.

Projectile Motion

projectile	an object that is set in motion following a path in which the only force acting on it is gravity.
inertia	the natural tendency of objects to resist a change in motion

Cheatography

One and two dimensional motion by anjuscha via cheatography.com/125991/cs/24592/

Projectile Motion (cont)		
projectile motion	the curved motion that results from the combination of an object's horizontal inertia and the force due to gravity pulling the object downward. I.e. A ball rolling of the table, A player shooting a jump shot -> Projec- tiles follow a parabolic path	
parabolic	having the shape of a parabola	
vectors	Vectors are used to describe motion in two dimensions. Vectors can be broken down into x and y components. The components of a vector are the two parts of a vector that are perpendicular to each other	
Add		
cost	$\theta = \frac{A_s}{A}$	

Horizonta

Horizontal example

	Horizontally Launched Projectiles
	EXAMPLE
	A pencil rolls off a desk that is 0.76 m tall. If the pencil hits the floor 0.32 m from the base of the desk, how fast was the pencil rolling?
	Given:
	$\Delta y = \boxed{-0.76} \text{ m} \qquad \qquad y_{\pm y_{\pm}} \xrightarrow{y_{\pm y_{\pm}}} x$
	$\Delta x = 0.32 \text{ m}$
	$a_{y} = -g = -9.8 \text{ m/s}^{2}$
	Unknown:
	v _x = ?
	We can use the equation:
	$\Delta \mathbf{x} = v_x \Delta \mathbf{z}$
	SOLVE FOR T
	To solve for V_x , we first need to solve for time, t , by rearranging the formula:
	$\Delta y = \frac{1}{2} a_y (\Delta t)^2$
	$\Delta y = \frac{1}{2}a_y(\Delta t)$
	Plugging in values we have:
	$\Delta t = \boxed{\sqrt{\frac{2\Delta y}{a_y}}}$
	$\Delta t = \sqrt{\frac{2(-0.76 \text{ m})}{(-9.8 \text{ m/s}^2)}}$
	$\Delta t = 0.39$ s
С	ontinued
	So if we rearrange our first formula to solve for v ₂ , we get:
	$v_x = \frac{\Delta x}{\Delta t}$
	Δχ
	$\mathbf{v}_r = \frac{\Delta x}{\Delta t}$
	$=\frac{0.32 \text{ m}}{0.39 \text{ s}}$
	0.39 s
	= 0.82 m/s ²

C

By anjuscha cheatography.com/anjuscha/

Published 1st October, 2020. Last updated 1st October, 2020. Page 3 of 3. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com