Speed and Velocity

speed the distance traveled per unit of time. Speed is a scalar, a quantity that is described by magnitude alone. Constant speed refers to a fixed distance per unit of time. Average speed includes the total distance and total time.
velocity the displacement of an object per unit of time. Since displacement includes a direction, so does velocity. Speed with direction. Velocity is a vector a quantity that has both magnitude and direction.

vector	a quantity that has both
	magnitude and direction

reference the position from which an
frame event is observed
motion an image that represents the map position, velocity, and acceleration of an object at onesecond intervals
scalar a quantity that is described by magnitude alone

By anjuscha

cheatography.com/anjuscha/

Speed and Velocity (cont)

Motion	All motion is relative. It depends
and	
reference	
frame	on a reference frame. An object may appear to move faster or slower depending on the reference frame.
average	The slope of a line changes velocity
	when the velocity of an object changes -> The steeper the slope, the greater the velocity.
	The average velocity will be different than any of the other.
	Any point on the line will give only an instantaneous velocity.
change	A change in direction is repres- ented when the line on a positi- in direction
on-time graph changes from a positive slope to a negative. slope or from a negative slope to a positive slope. A negative	
slope indicates an object	
moving towards the origin. A	

Published 1st October, 2020.
Last updated 1st October, 2020.
Page 1 of 3 .

Speed and Velocity (cont)

No	horizontal line - means object is
motion	not moving -> The object's
	position does not change
Motion	Displayed in a vector !

\(\left.\begin{array}{ll}\hline Formula

\hline speed \& \mathrm{s}=\mathrm{d} / \mathrm{t}->50+30=80 miles, 1+1

\& =2 \mathrm{~h}->80 miles / 2 \mathrm{~h}=40 \mathrm{mph}\end{array}\right]\)| velocity | $\mathrm{v}=\Delta \mathrm{x} / \mathrm{t}$ |
| ---: | :--- |
| average | $\mathrm{vavg}=\Delta \mathrm{x} / \Delta \mathrm{t}=\mathrm{xf}-\mathrm{xi} / \mathrm{ft}-\mathrm{ti}->$ |
| velocity | $100 \mathrm{~m} \mathrm{in} 10.61 \mathrm{~s}->\mathrm{xf}=100 \mathrm{~m}$, |
| | $\mathrm{xi}=0 \mathrm{~m}, \mathrm{tf}=10.61 \mathrm{~s}, \mathrm{ti}=0 \mathrm{~s}->\mathrm{v}$ |
| | $\mathrm{avg}=100 \mathrm{~m}-0 \mathrm{~m} / 10.61 \mathrm{~s}-0 \mathrm{~s}$ |
| | $=100 / 10.61=9.43 \mathrm{~m} / \mathrm{s}$ |

Acceleration

positive an increase in velocity over time accele-
ration
negative a decrease in velocity over time
accele-
ration

accele- ration	the rate at which velocity changes over time
constant	staying the same; unchanging
Positive	speeds up in the positive
accele-	direction. slows down in the
ration	negative direction

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

Acceleration (cont)

Negative slow down down in the positive accele- direction. speeds up in the
ration negative direction.

Slope of the line on a velocity vs. time graph represents acceleration. Positive slope = acceleration, negative slope $=$ negative acceleration

Displacement during constant accele-
ration
ration

Displacement during constant velocity	$\Delta x=v t$
Displacement during accoleration	$\Delta x=\frac{1}{2}\left(v_{t},-v_{j}\right) t$
Total displacement is the sum of the two	$\Delta x=v_{t} t+\frac{1}{2}\left(\square v_{f}-v_{f}\right) t$
Terms are combined	$\Delta x=\frac{1}{2}\left(v_{f}+v_{j}\right) t$
When the inlial position is not zero	$x_{f}=x_{t}+\frac{1}{2}\left(v_{f}+v_{j}\right) t$

By anjuscha

cheatography.com/anjuscha/

vectors	
quadrant	a quarter of the coordinate plane
components	the two parts of a vector that are perpendicular to each other
resultant	the sum of two or more vectors
vector	the process by which the components of a vector are determined
vector	
resolution	
Properties vector is a quantity that	
has both magnitude and	
direction. Examples of	
vectors: Displacement,	
velocity, acceleration.	
Vectors are drawn using an	
arrow	

Published 1st October, 2020.

Last updated 1st October, 2020.
Page 2 of 3 .

More

Magnitude of the Resultant Vector

Sign of a component

The sign of a component depends on the quadrant of the coordinate system it is in.

Projectile Motion	
projectile	an object that is set in motion following a path in which the only force acting on it is gravity.
inertia	the natural tendency of objects to resist a change in motion

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com
\(\left.$$
\begin{array}{|ll|}\hline \text { Projectile Motion (cont) } \\
\hline \begin{array}{ll}\text { projectile } \\
\text { motion } & \text { the curved motion that results } \\
\text { from the combination of an } \\
\text { object's horizontal inertia and } \\
& \text { the force due to gravity pulling } \\
\text { the object downward. I.e. A ball } \\
\text { rolling of the table, A player } \\
\text { shooting a jump shot -> Projec- }\end{array}
$$

\& tiles follow a parabolic path\end{array}\right\}\)\begin{tabular}{ll}
parabolic \& having the shape of a parabola

vectors \& | Vectors are used to describe |
| :--- |
| motion in two dimensions. |

\& | Vectors can be broken down |
| :--- |
| into x and y components. The |
| components of a vector are the |
| two parts of a vector that are |
| perpendicular to each other |

\hline
\end{tabular}

Add

$\cos \theta=\frac{A_{x}}{A}$
$\sin \theta=\frac{A_{y}}{A}$
If we rearrange these we now get:
$A_{x}=A \cos \theta$
$A_{y}=A \sin \theta$

By anjuscha

cheatography.com/anjuscha/

Horizontal

Horizontally Launched Projectiles

Horizontally Launched Projectiles

Horizontal example

Horizontally Launched Projectiles

EXAMPLE
A pencil rolls off a desk that is 0.76 m tall. If the pencil hits the floor 0.32 m from
the base of the desk, how fast was the pencil roling?
Given:

Unknown:
$v_{x}=$?
We can use the equation:

$\Delta x=v, \Delta t$
SOLVE FOR T
To solve for V_{w} we first need to solve for time, t, by rearranging the formula:
$\Delta y=\frac{1}{2} a_{y}(\Delta t)^{2}$
Plugging in values we have

continued

So if we rearrange our first formula to solve for v_{p} we get:

Published 1st October, 2020.
Last updated 1st October, 2020.
Page 3 of 3 .

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

