Cheatography

One and two dimensional motion by anjuscha via cheatography.com/125991/cs/24592/

Speed and	l Velocity	Speed
speed	the distance traveled per unit of time. Speed is a scalar, a quantity that is described by magnitude alone. Constant speed refers to a fixed distance	Motion and referer frame
	per unit of time. Average speed includes the total distance and total time.	averag velocit
velocity	the displacement of an object per unit of time. Since displa- cement includes a direction, so does velocity. Speed with direction. Velocity is a vector a quantity that has both magnitude and direction	change
vector	a quantity that has both magnitude and direction	directio
reference frame	the position from which an event is observed	
motion map	an image that represents the position, velocity, and accele- ration of an object at one- second intervals	
scalar	a quantity that is described by magnitude alone	

Speed and	Velocity (cont)
Motion and reference frame	All motion is relative. It depends on a reference frame. An object may appear to move faster or slower depending on the reference frame.
average velocity	The slope of a line changes when the velocity of an object changes -> The steeper the slope, the greater the velocity. The average velocity will be different than any of the other. Any point on the line will give only an instantaneous velocity.
change in direction	A change in direction is repres- ented when the line on a positi- on-time graph changes from a positive slope to a negative. slope or from a negative slope to a positive slope. A negative slope indicates an object moving towards the origin. A positive slope indicates an object moving away from the origin.

Speed and Velocity (cont)

No motion	horizontal line - means object is not moving -> The object's position does not change
Motion	Displayed in a vector !
Formula	
speed	s = d/t -> 50 + 30 = 80 miles, 1+1 = 2h -> 80 miles/2h = 40 mph
velocity	$v = \Delta x/t$
average velocity	v avg = $\Delta x/\Delta t$ = xf - xi/tf - ti -> 100 m in 10.61 s -> xf = 100 m, xi = 0 m, tf = 10.61 s, ti = 0 s -> v avg = 100 m - 0 m / 10.61 s - 0 s

	3					
=	100/1	0.61	= 9.4	3 n	n/s	

Accelerati	on
positive accele- ration	an increase in velocity over time
negative accele- ration	a decrease in velocity over time
accele- ration	the rate at which velocity changes over time
constant	staying the same; unchanging
Positive accele- ration	speeds up in the positive direction. slows down in the negative direction

By anjuscha

cheatography.com/anjuscha/

Published 1st October, 2020. Last updated 1st October, 2020. Page 1 of 3. Sponsored by Readable.com

Measure your website readability! https://readable.com

Cheatography

One and two dimensional motion by anjuscha via cheatography.com/125991/cs/24592/

Accelerat	ion (cont)
Negative accele- ration	slow down down in the positive direction. speeds up in the negative direction.
Slope	of the line on a velocity vs. time graph represents acceleration. Positive slope = acceleration, negative slope = negative acceleration
accelerati	on

Displacement during constant acceleration

Displacement during constant velocity	$\Delta x = vt$
Displacement during acceleration	$\Delta x = \frac{1}{2}(v_j - v_j)t$
Total displacement is the sum of the two	$\Delta x = v_i t + \frac{1}{2} (v_r - v_i) t$
Terms are combined	$\Delta x = \frac{1}{2} (v_{j} + v_{j})t$
When the initial position is not zero	$x_{j} = x_{i} + \frac{1}{2}(v_{j} + v_{i})t$

Fo	rmula	
	Two vectors added at a right angle (90°)	$R^2 = A^2 + B^2$
	Magnitude and sign of component vectors	$A_{x} = A\cos\theta$ $A_{y} = A\sin\theta$
	Magnitude of the resultant vector	$R^2 = R_x^2 + R_y^2$
	Angle or direction of the resultant vector	$\tan \theta = \boxed{\frac{R_{y}}{R_{x}}}$

By anjuscha

cheatography.com/anjuscha/

Horizontal motion example

Key concepts

vectors	
quadrant	a quarter of the coordinate plane
components	the two parts of a vector that are perpendicular to each other
resultant vector	the sum of two or more vectors
vector resolution	the process by which the components of a vector are determined
Properties of a vector	A vector is a quantity that has both magnitude and direction. Examples of vectors: Displacement, velocity, acceleration. Vectors are drawn using an arrow

$\begin{aligned} k' - A' + p' \\ A - 300m & B - 300m \\ k' - 300^{2} + 300^{2} \end{aligned}$ $k' - 110,000 \\ R - 424.20 m \end{aligned}$ Components of Vectors A vector that is diagonal is made up of a hostcontal part and a vector with the components of vectors the two parts of a vector relative transmission of the two parts of the components of vectors the two parts of the components of the vector flat is a compared with the two parts of the vector flat is a compared with the parts of the vector flat is a compared with the parts of the vector flat is a compared with the ve

Magnitude of the Resultant Vector

of a vector that are perpendicular to each other. • $A_{1} - A_{022}\theta$ and $\theta = \frac{A_{1}}{A_{1}}$ • $A_{2} - A_{022}\theta$ and $\theta = \frac{A_{1}}{A_{2}}$ • <u>Vector resolution</u> is the process by which the components of a vector are determined.

Sign of a component

More

The sign of a component depends on the quadrant of the coordinate system it is in.

Projectile Motion

projectile	an object that is set in motion
	following a path in which the
	only force acting on it is gravity.
inertia	the natural tendency of objects
	to resist a change in motion

Published 1st October, 2020. Last updated 1st October, 2020. Page 2 of 3.

Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

One and two dimensional motion by anjuscha via cheatography.com/125991/cs/24592/

Projectile	Motion (cont)
projectile motion	the curved motion that results from the combination of an object's horizontal inertia and the force due to gravity pulling the object downward. I.e. A ball rolling of the table, A player shooting a jump shot -> Projec- tiles follow a parabolic path
parabolic	having the shape of a parabola
vectors	Vectors are used to describe motion in two dimensions. Vectors can be broken down into x and y components. The components of a vector are the two parts of a vector that are perpendicular to each other
Add	
cost	$\theta = \frac{A_{\star}}{2}$

Horizonta

Horizontal example

Horizontally Launched Projectiles
EYAMDI E
A papel role off a dock that is 0.76 m tall. If the papel bits the floor 0.32 m from
the base of the desk, how fast was the pencil rolling?
Given:
$\Delta y = -0.76 \text{ m} \qquad y_{\uparrow v_{x}} \qquad $
$\Delta x = 0.32 \text{ m}$
$a_y = -g = -9.8 \text{ m/s}^2$
Unknown:
We can use the equation: 0.32 m
$\Delta \mathbf{x} = v_x \Delta t$
SOLVE FOR T
To solve for $V_{\rm sr}$ we first need to solve for time, $t,$ by rearranging the formula:
$\Delta y = \frac{1}{2} a_{\mu} (\Delta t)^2$
Plugging in values we have:
$\Delta t = \boxed{\frac{2\Delta y}{\sigma_y}}$
$\Delta t = \sqrt{\frac{2(-0.76 \mathrm{m})}{(-9.8 \mathrm{m/s}^2)}}$
$\Delta t = \boxed{0.39} s$
continued
So if we rearrance our first formula to solve for v_ we get:
$v_{\mu} = \frac{\Delta x}{\Delta x}$
Δt
$\nabla_r = \frac{\Delta x}{\Delta t}$
= 0.32 m
0.39 s
= 0.82 m/s ²

By **anjuscha**

cheatography.com/anjuscha/

Published 1st October, 2020. Last updated 1st October, 2020. Page 3 of 3. Sponsored by **Readable.com** Measure your website readability! https://readable.com