Euclidean Geometry	
theorem	a statement that has been proven based on previous theorems, postulates, or axioms
collinear	points that lie on the same line
deductive	the process of utilizing facts,
reasoning	properties, definitions, and theorems to form a logical argument
coplanar	contained within the same plane
postulate	a statement accepted without proof; also known as an axiom

Add

Euclidean geometry is comprised of figures and diagrams that can all be constructed using just a straightedge and compass.
$\left.\begin{array}{lll|}\hline \text { Point, line, plane } & \text { Plane } \\ \hline \text { Point } & \text { Line } & \text { One-dimensional }\end{array} \begin{array}{l}\text { Two-di- } \\ \text { No } \\ \text { dimensions }\end{array} \begin{array}{l}\text { set of infinite } \\ \text { points }\end{array} \quad \begin{array}{l}\text { sional } \\ \text { set of all } \\ \text { points }\end{array}\right]$

By anjuscha
cheatography.com/anjuscha/
\(\left.$$
\begin{array}{|ll|}\hline \text { Defining terms } \\
\hline \begin{array}{ll}\text { line } & \text { a part of a line that has two } \\
\text { segment } \\
\text { endpoints and a specific length }\end{array} \\
\hline \text { ray } & \begin{array}{l}\text { part of a line that has one } \\
\text { endpoint and extends indefi- } \\
\text { nitely in one direction }\end{array} \\
\text { circle } & \begin{array}{l}\text { the set of all points in a plane } \\
\text { that are a given distance away } \\
\text { from a given point called the } \\
\text { center }\end{array}
$$

angle figure formed by two rays that

share a common endpoint\end{array}\right\}\)| lines that lie in the same plane |
| :--- |
| and do not intersect |

Measuring Length and Angles (cont)

congruent	two angles that have the same
angles	measure
obtuse	an angle measuring greater
angle	than 90 degrees, but less than 180 degrees

straight an angle whose measure is
angle exactly 180 degrees
acute an angle measuring between 0
angle and 90 degrees
right an angle whose measure is
angle exactly 90 degrees

Intro to proof	
conjecture	a statement thought to be true but not yet proved true or false
deductive	the process of utilizing facts,
reasoning	properties, definitions, and theorems to form a logical argument
reflexive	the property that states that for any real number $x, x=x ;$ or that a figure and its parts (e.g., property
	sides, angles, triangles, etc.) are congruent to themselves
substi-	the property stating that if two values are equal, then they are interchangeable in an tution property equation; or if two figures are
symmetric	interchangeable in a statement property
thepropertythatstatesthatth- eleftandright sides of an equation or congruence statement are interchangeable	

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Intro to proof (cont)

Proofs given information, in words or a diagram, a statement involve: to be proven, an argument using deductive reasoning and justification of steps in a logical order. A conclusion

Linear Pairs and Vertical Angles	
linear pair	2 adjacentangles whose noncommon sides are opposite rays
vertical angles	opposite angles formed by two intersecting lines

Complementary and Supplementary Angles

opposite rays	ays that are collinear and have the same endpoint but run infinitely in opposite directions
supple- mentary angles	two angles whose measures have a sum of 180 degrees
comple-	angles are two angles whose measures have a
mentary	sum of 90 degrees
angles	

Example finding angle

Find the following angle measures.

```
m\angle1 = ?
m\angle1+70}=9\mp@subsup{0}{}{\circ
m\angle1 = 90' - 70
m\angle1=20
```


By anjuscha

cheatography.com/anjuscha/

Published 1st October, 2020.
Last updated 1st October, 2020.
Page 2 of 2.

Sponsored by Readable.com

 Measure your website readability!https://readable.com

