Cheatography

Chemistry Unit 1 Cheat Sheet

by anjuscha via cheatography.com/125991/cs/24413/

The nature of chemistry

Nature of Ch	emistry
Chemistry	Study of substances that make up the world and the changes they undergo
Pseydo- science	Process inv. the collection of info that is supported by belief or opinion
Science	Process inv. the collection of info that is supported by evidence

Science is systematic, inv. collection of info and ideas, inv. obs. and experimentation, supp. by evidence

Science Pseudoscience relies on lacks process, is process, is subject, is objective, is resistant to new updated info (i.e. flat constantly earters..)

Scientific inquiry is the process of using obs, investigations, and exp. to learn about natural phenomena -> any testable questions about obs., importance on creativity

Formulating Scientific Questions

Scientific Based on obs. and question is **testable**

Formulating Scientific Questions (cont)

Most Q	What is that? Why?
are	How does it work? I
based	wonder why
on obs.	
A good	narrow focus,
one	unknown answer,
	addresses gap in
	knowledge, leads to
	a hypothesis that
	can be tested
Non	based on supern-
scientific	atural, opinion, rely
question	on moral or social
	values

Scientific methods (cont)

Control sample	Sample in a controlled exp. with variables
Exp.	that don't change sample in a controlled exp. in which one variable changes
Models	Simple, idea, picture, equation, method, diagram -> visualizing exp. results
Writing a lab report	Question/Hypothesis - > materials -> procedure -> result- s/data -> analysis -> conclusion

Hypothesis, Theory, and Law

Hypothesis	Testable expl. of a sc. problem based on research and obs. (if/then). Must be testable, supported/refuted by data
Theory	Hypothesis or a group of rel. hypothesis as true based on obs. and repetitive exp., must be testable, req. many exp. and confirmed data to overturn/modify, can be used for predictions or explanations

ations

Law Statement of facts generally accepted to be

true, describes relationships in nature, but does not prov. explanation; can be used to predict events/exp.

to predict events/exp. results, support. by all obs. and data, doesn't

Scientific methods

Dependent variable	Variable that is changed by another variable	
Indepe- ndent variable	The variable that you change	
Qualitative	Obs/data that is not measured on numbers/precise measurements	
Quanti- tative	Obs/data based on numbers/p- recise measur- ements	
Sc. Inquiry	Process of using obs, inv., and exp. to learn about natural phenomena	
Conclusion	Summary of the results	
Controlled exp.	an exp. in which one variable is	

changed

Research in Science

Skepticism	Open minded knowledge in a certain area may be uncertain
Bias	Point of view influenced by opinion
Scientific census	General agreement along scientists on an idea
How to develop sc. census?	Communication! Publications (peer-reviewed), meetings/confer- ences, discuss findings (person/o- nline)
Databases	Pubmed, NCBI, NHI, Google scholar

C

By **anjuscha** cheatography.com/anjuscha/

Published 25th September, 2020. Last updated 25th September, 2020. Page 1 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Cheatography

Chemistry Unit 1 Cheat Sheet

by anjuscha via cheatography.com/125991/cs/24413/

Hypothesis, Theory, and Law (cont)

How to Attempt to explain work an obs. or answer with a a Q -> test it -> if support, then data Hypothesis? will agree with it -> if refute, then data will not agree, redo procedure or hypothesis -> continue evaluating data

Dalton's Atomic Theory

Atomic

Theory

all matter is comp. of atoms, atoms cannot be made/destroyed during chemical reactions, all atoms of an element are identical, different elements have diff. kinds of atoms, chemical reactions occur through rearrangement of atoms Explains law of

conservation of

mass

Hypothesis, Theory, and Law (cont)

Reprod Theory must be ucibility supported by all leads evidence, other to scientists should reliab-get similar results, ility all experiment must be reproducible

Safety in Science

MSDS Describes proper-(material ties, handling, and emergency safety data procedures of a sheet) substance General Avoid lose clothes/hair, wear long safety sleeves/close practices toed shoes, do not drink/eat/chew gum, no jewelry, avoid contacts if possible, avoid clutter in lab Handling Use tongs/mitts chemicfor hot objects, label all contaials/equipment ners, inspect equipment before use, dispose of all substances appropriately

Safety in Science (cont)

PPE Eyes/face:
(personal safety goggleprotective s/shield, skin/cequipment) lothing: lab
coat/apron,
hands: gloves

Emergency Fire extingequipment uisher, eye

equipment uisher, eye
wash, safety
shower, first-aid
kit

Chemistry Beaker, flask, glass ware test tubes, graduated

cylinder

Handling check for glass ware breaks/chips, use tongs/-

Heating Bunsen brennedevices r/alcohol burner, hot

holders

plate

Use clear/acc-

urate labels, do

not taste/smell/-

Use of chemicals

touch
chemicals, use
pipettes to
transfer liquids,
do not put
liquids back into
storage
container, refer
to MSDS for
storage/disp-

Accident Stay calm,

report, avoid danger, spill kit, help injured

osal/handling

Cuts from apply pressure/-broken flush

Safety in Science (cont)

Chemical burns/irritations/heat burns source/put out fire

Inhalation of toxic Get fresh chemicals air/report

Chemicals in eyes Eye wash (10-15 mins), report

Tools and Technology in chem

Balance	Measure mass		
Beaker	Holds liquids		
Buret	Used to deliver specific volume, i.e. titrate volumes		
Degrees Celsius	Fahrenheit - 30 : 2 = ~ x C		
Graduated cylinder	Measure volume of liquid		
SI	International system of units, standard set of units used by all scientists		
Kelvin	SI unit for temperature in science, 0 C = -273.15 K		
Kilogram	SI Unit for mass		
Liter	SI unit for volume		
Meter	SI unit for distance		

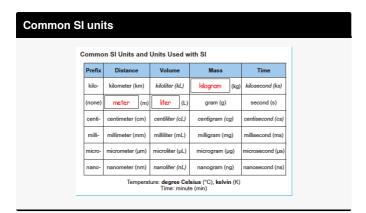
Metric system

The Metric System is Base 10

Prefix	Symbol	Multiplier	Prefix	Symbol	Multiplier
tera-	T	1,000,000,000,000	centi-	С	0.01
giga-	G	1,000,000,000	milli-	m	0.001
mega-	М	1,000,000	micro-	μ	0.000001
kilo-	k	1,000	nano-	n	0.000000001

By anjuscha cheatography.com/anjuscha/

Published 25th September, 2020. Last updated 25th September, 2020. Page 2 of 3.


glassware

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Chemistry Unit 1 Cheat Sheet

by anjuscha via cheatography.com/125991/cs/24413/

$\label{eq:metric conversion example} \begin{tabular}{ll} \textbf{Metric Conversions} \\ \cdot & \texttt{Convert 5.97 cm to millimeters.} \\ \cdot & \texttt{1 cm} = 10 \\ \hline & \texttt{mm} \\ \cdot & \texttt{5.97 cm} = \left(\begin{array}{c} 5.97 \\ \hline \end{bmatrix} \right) (10) = 59.7 \, \text{mm} \\ \cdot & \texttt{Convert 25.0 mL to liters.} \\ \cdot & \texttt{1 mL} \\ & = \texttt{0.001 L} \\ \cdot & \texttt{25.0 mL} = \left(25.0 \right) \left(\begin{array}{c} 0.001 \\ \hline \end{bmatrix} \right) = \texttt{0.025 L} \\ \cdot & \texttt{Convert 0.0453 kg to grams.} \\ \cdot & \texttt{1 kg} = \begin{array}{c} 1.000 \\ \hline \end{bmatrix} g \\ \cdot & \texttt{0.0453 kg} = (0.0453) (1.000) = 45.3 \, \text{g} \\ \hline \end{tabular}$

Collecting and organizing data logical conclusion made from observation Qualitnon-numerical, descriptive - describes categories or characteristics of things ative data Quantinumerical data that can be measured, data that is tative easy to analyze over graph or table, has units, always data numbers Used for qualitative data Charts Used for numerical data set in columns and rows Tables Graphs Bar/line/pie, display data for analysis for all parts of charts, tables, and graphs Labels

By anjuscha cheatography.com/anjuscha/

Published 25th September, 2020. Last updated 25th September, 2020. Page 3 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com