GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Cheatograph

Header

#include<gmp.h>

mpz_t multiple precision integer

mpq_t multiple precision fraction

mpf_t float is an arbitrary precision mantissa with a limited precision exponent

mp_exp_t floating point functions accept and return exponents in this type

mp_limb_t a limb means the part of a multi-precision number that ts in a single machine word (normally 32bit or 64bit)
mp_size_t counts of limbs of a multi-precision number represented

mp_bitent_t counts of bits of a multi-precision number

gmp_randstate_t random state means an algorithm selection and current state data

Function Class prefixes

mpz_ Functions for signed integer arithmetic
mpqg_ Functions for rational number arithmetic
mpf_ Functions for floating-point arithmetic

mpn_ Fast low-level functions that operate on natural numbers. These are used by the functions in the preceding groups, and you can also call them
directly from very time-critical user programs.

Initialization Functions

void mpz_init (mpz_t x) Initialize x, and set its value to 0.

void mpg_init (mpq_t x) Initialize x and set it to 0/1.

void mpf_init (mpf_t x) Initialize x to 0.

void mplz,q,f]_inits (mp[z,q.f] X, ...) Initialize a NULL-terminated list of mp([z,q,f]_t variables, and set their values to 0.

void mpl[z,q,f]_clear (mp[z,q,f]_t x) Free the space occupied by x. Call this function for all mp|z,q,f]_t variables when you are done with them.
void mp[z,q,f]_clears (mp[z,q,f]_t x, ...) Free the space occupied by a NULL-terminated list of mp[z,q,f]_t variables.

Assignment Functions

void mpz_set (mpz_t rop, const mpz_t op) Set the value of rop from op.

void mpz_set_ui (mpz_t rop, unsigned long int op)
void mpz_set_si (mpz_t rop, signed long int op) "
void mpz_set_d (mpz_t rop, double op) truncate

void mpz_set_q (mpz_t rop, const mpq_t op)

void mpz_set_f (mpz_t rop, const mpf_t op)

void mpg_set (mpqg_t rop, const mpq_t op) Assign rop from op.
By andystp Not published yet. Sponsored by ApolloPad.com
cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!

Page 1 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Assignment Functions (cont)

void mpg_set_z (mpg_t rop, const mpz_t op) "

Cheatography

void mpq_set_ui (mpg_t rop, unsigned long Set the value of rop to op1/op2. Note that if op1 and op2 have common factors, rop has to be passed to
int op1, unsigned long int op2) mpq_canonicalize before any operations are performed on rop.

void mpg_set_si (mpg_t rop, signed long int
op1, unsigned long int op2)

void mpf_set (mpf_t rop, const mpf_t op) Set the value of rop from op.

void mpf_set_ui (mpf_t rop, unsigned long int
op)

void mpf_set_si (mpf_t rop, signed long int
op)

void mpf_set_d (mpf_t rop, double op)

void mpf_set_z (mpf_t rop, const mpz_t op)

void mpf_set_q (mpf_t rop, const mpq_t op)

int mpz_set_str (mpz_t rop, const char *str, int ~ Set the value of rop from str, a null-terminated C string in base base. White space is allowed in the string,
base) and is simply ignored. Should return 0, if error returns -1.

int mpg_set_str (mpq_t rop, const char *str, int Set rop from a null-terminated string str in the given base. Should return 0, if error returns -1.
base)

int mpf_set_str (mpf_t rop, const char *str, int et the value of rop from the string in str. Should return 0, if error returns -1.

base)

void mpz_swap (mpz_t rop1, mpz_t rop2) Swap the values rop1 and rop2 efficiently.

void mpg_swap (mpq_t rop1, mpq_t rop2) Swap the values rop1 and rop2 efficiently.

void mpf_swap (mpf_t rop1, mpf_t rop2) Swap rop1 and rop2 efficiently. Both the values and the precisions of the two variables are swapped.

unsigned long int mpz_get_ui (const mpz_t op) Return the value of op as an unsigned long.

signed long int mpz_get_si (const mpz_t op) If op fits into a signed long int return the value of op. Otherwise return the least significant part of op,
with the same sign as op.

double mpz_get_d (const mpz_t op) Convert op to a double, truncating if necessary (i.e. rounding towards zero).

double mpz_get_d_2exp (signed long int “exp, Convert op to a double, truncating if necessary (i.e. rounding towards zero), and returning the

const mpz_t op) exponent separately.

char mpz_get str (char str, int base, const mpz_t Convert op to a string of digits in base base. The base argument may vary from 2 to 62 or from -2 to -
op) 36.

By andystp Not published yet. Sponsored by ApolloPad.com
cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!
Page 2 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Conversion Functions (cont)

Cheatography

double mpg_get_d (const Convert op to a double, truncating if necessary (i.e. rounding towards zero).
mpq_t op)

void mpg_set_d (mpq_t rop, Set rop to the value of op. There is no rounding, this conversion is exact.
double op)

void mpg_set_f (mpg_t rop, Set rop to the value of op. There is no rounding, this conversion is exact.

const mpf_t op)

char mpqg_get _str (char str, int Convert op to a string of digits in base base. The base may vary from 2 to 36. The string will be of the form ‘num/den’, or

base, const mpq_t op) if the denominator is 1 then just ‘num’.

double mpf_get_d (const Convert op to a double, truncating if necessary (i.e. rounding towards zero).

mpf_t op)

double mpf_get_d_2exp Convert op to a double, truncating if necessary (i.e. rounding towards zero), and with an exponent returned separately.
(signed long int *exp, const

mpf_t op)

long mpf_get_si (const mpf_t Convert op to a long or unsigned long, truncating any fraction part. If op is too big for the return type, the result is

op) undefined.

unsigned long mpf_get_ui Convert op to a long or unsigned long, truncating any fraction part. If op is too big for the return type, the result is
(const mpf_t op) undefined.

char mpf_get str (char str, Convert op to a string of digits in base base. The base argument may vary from 2 to 62 or from -2 to -36. Up to n_digits
mp_exp_t *expptr, int base, digits will be generated. Trailing zeros are not returned. No more digits than can be accurately represented by op are
size_t n_digits, const mpf_t ever generated. If n_digits is 0 then that accurate maximum number of digits are generated.

op)

Arithmetic Functions

void mpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2) Set rop to op1 + op2.

void mpz_add_ui (mpz_t rop, const mpz_t op1, unsigned long int op2) Set rop to op1 + op2.

void mpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2) Set rop to op1 - op2.

void mpz_sub_ui (mpz_t rop, const mpz_t op1, unsigned long int op2) Set rop to op1 - op2.

void mpz_ui_sub (mpz_t rop, unsigned long int op1, const mpz_t op2) Set rop to op1 - op2.

void mpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2) Set rop to op1 times op2.
By andystp Not published yet. Sponsored by ApolloPad.com
cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!

Page 3 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Cheatography

Arithmetic Functions (cont)

void mpz_mul_si (mpz_t rop, const mpz_t op1, long int op2) Set rop to op1 times op2.

void mpz_mul_ui (mpz_t rop, const mpz_t op1, unsigned long int Set rop to op1 times op2.

op2)

void mpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2) Set rop to rop + op1 times op2.

void mpz_addmul_ui (mpz_t rop, const mpz_t op1, unsigned long int ~ Set rop to rop + op1 times op2.
op2)

void mpz_submul (mpz_t rop, const mpz_t op1, const mpz_t op2) Set rop to rop - op1 times op2.

void mpz_submul_ui (mpz_t rop, const mpz_t op1, unsigned long int ~ Set rop to rop - op1 times op2.

op2)

void mpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2) Set rop to op1 times 2 raised to op2. This operation can also be defined as a left
shift by op2 bits.

void mpz_neg (mpz_t rop, const mpz_t op) Set rop to -op.

void mpz_abs (mpz_t rop, const mpz_t op) Set rop to the absolute value of op.

void mpg_add (mpg_t sum, const mpq_t addend1, const mpq_t Set sum to addend1 + addend2.

addend?2)

void mpg_sub (mpg_t difference, const mpqg_t minuend, const mpg_t Set difference to minuend - subtrahend.
subtrahend)

void mpg_mul (mpg_t product, const mpq_t multiplier, const mpq_t Set product to multiplier times multiplicand.
multiplicand)

void mpg_mul_2exp (mpg_t rop, const mpg_t op1, mp_bitcnt_t op2) Set rop to op1 times 2 raised to op2. This operation can also be defined as a left
shift by op2 bits.

void mpg_div (mpg_t quotient, const mpq_t dividend, const mpg_t Set quotient to dividend/divisor.
divisor)

void mpg_div_2exp (mpq_t rop, const mpq_t op1, mp_bitcnt_t op2) Set rop to op1 divided by 2 raised to op2.

void mpg_neg (mpg_t negated_operand, const mpq_t operand) Set negated_operand to -operand.
void mpg_abs (mpq_t rop, const mpq_t op) Set rop to the absolute value of op.
void mpg_inv (mpg_t inverted_number, const mpqg_t number) Set inverted_number to 1/number. If the new denominator is zero, this routine will

divide by zero.

void mpf_add (mpf_t rop, const mpf_t op1, const mpf_t op2) Set rop to op1 + op2.

void mpf_add_ui (mpf_t rop, const mpf_t op1, unsigned long int op2) Set rop to op1 + op2.

By andystp Not published yet. Sponsored by ApolloPad.com
cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!
Page 4 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Cheatography

Arithmetic Functions (cont)

void mpf_sub (mpf_t rop, const mpf_t op1, const mpf_t op2) Set rop to op1 - op2.

void mpf_ui_sub (mpf_t rop, unsigned long int op1, const mpf_t Set rop to op1 - op2.

op2)

void mpf_sub_ui (mpf_t rop, const mpf_t op1, unsigned long int ~ Set rop to op1 - op2.
op2)

void mpf_mul (mpf_t rop, const mpf_t op1, const mpf_t op2) Set rop to op1 times op2.

void mpf_mul_ui (mpf_t rop, const mpf_t op1, unsigned long int ~ Set rop to op1 times op2.

op2)

void mpf_div (mpf_t rop, const mpf_t op1, const mpf_t op2) Set rop to op1/op2.

void mpf_ui_div (mpf_t rop, unsigned long int op1, const mpf_t Set rop to op1/op2.

op2)

void mpf_div_ui (mpf_t rop, const mpf_t op1, unsigned long int ~ Set rop to op1/op2.

op2)

void mpf_sqrt (mpf_t rop, const mpf_t op) Set rop to the square root of op.
void mpf_sqrt_ui (mpf_t rop, unsigned long int op) Set rop to the square root of op.
void mpf_pow_ui (mpf_t rop, const mpf_t op1, unsigned long Set rop to op1 raised to the power op2.
int op2)

void mpf_neg (mpf_t rop, const mpf_t op) Set rop to -op.

void mpf_abs (mpf_t rop, const mpf_t op) Set rop to the absolute value of op.

void mpf_mul_2exp (mpf_t rop, const mpf_t op1, mp_bitcnt_t Set rop to op1 times 2 raised to op2. This operation can also be defined as a left shift by
op2) op2 bits.

void mpf_div_2exp (mpf_t rop, const mpf_t op1, mp_bitcnt_t Set rop to op1 divided by 2 raised to op2.

op2)

Integer Division Functions

void mpz_cdiv_q (mpz_t g, const mpz_t n, const mpz_t d)

void mpz_cdiv_r (mpz_t r, const mpz_t n, const mpz_t d)

void mpz_cdiv_qgr (mpz_t q, mpz_t r, const mpz_t n, const mpz_t d)

unsigned long int mpz_cdiv_q_ui (mpz_t g, const mpz_t n, unsigned long int d)
unsigned long int mpz_cdiv_r_ui (mpz_t r, const mpz_t n, unsigned long int d)

unsigned long int mpz_cdiv_qgr_ui (mpz_t q, mpz_t r, const mpz_t n, unsigned long int d)
unsigned long int mpz_cdiv_ui (const mpz_t n, unsigned long int d)

void mpz_cdiv_q_2exp (mpz_t g, const mpz_t n, mp_bitcnt_t b)

void mpz_cdiv_r_2exp (mpz_t r, const mpz_t n, mp_bitcnt_t b)

void mpz_fdiv_q (mpz_t g, const mpz_t n, const mpz_t d)
void mpz_fdiv_r (mpz_t r, const mpz_t n, const mpz_t d)

void mpz_fdiv_qr (mpz_t g, mpz_t r, const mpz_t n, const mpz_t d)

By andystp Not published yet. Sponsored by ApolloPad.com
cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!
Page 5 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

1eatography

sion Functions (cont)

unsigned long int mpz_fdiv_q_ui (mpz_t q, const mpz_t n, unsigned long int d)
unsigned long int mpz_fdiv_r_ui (mpz_t r, const mpz_t n, unsigned long int d)

unsigned long int mpz_fdiv_qr_ui (mpz_t g, mpz_t r, const mpz_t n, unsigned long int d)
unsigned long int mpz_fdiv_ui (const mpz_t n, unsigned long int d)

void mpz_fdiv_q_2exp (mpz_t g, const mpz_t n, mp_bitcnt_t b)

void mpz_fdiv_r_2exp (mpz_t r, const mpz_t n, mp_bitcnt_t b)

void mpz_tdiv_q (mpz_t g, const mpz_t n, const mpz_t d)

void mpz_tdiv_r (mpz_t r, const mpz_t n, const mpz_t d)

void mpz_tdiv_qr (mpz_t g, mpz_t r, const mpz_t n, const mpz_t d)

unsigned long int mpz_tdiv_q_ui (mpz_t q, const mpz_t n, unsigned long int d)
unsigned long int mpz_tdiv_r_ui (mpz_t r, const mpz_t n, unsigned long int d)

unsigned long int mpz_tdiv_qr_ui (mpz_t g, mpz_t r, const mpz_t n, unsigned long int d)
unsigned long int mpz_tdiv_ui (const mpz_t n, unsigned long int d)

void mpz_tdiv_qg_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b)

void mpz_tdiv_r_2exp (mpz_t r, const mpz_t n, mp_bitcnt_t b)

Divide n by d, forming a quotient g and/or remainder r. For the 2exp functions, d=2"b. The cdiv rounds g up towards +infinity, and r will have the
rounding is in three styles, each suiting different applications. opposite sign to d. The ¢ stands for “ceil”.

fdiv rounds g down towards -infinity, and r will have the
same sign as d. The f stands for “floor”.

tdiv rounds q towards zero, and r will have the same sign
as n. The t stands for “truncate”.

In all cases q and r will satisfy n=q*d+r, and r will satisfy 0<=abs(r)<abs(d).

The g functions calculate only the quotient, the r functions only the remainder, and the gr functions calculate both. Note that for gr the same variable cannot
be passed for both g and r, or results will be unpredictable.

For the ui variants the return value is the remainder, and in fact returning the remainder is all the div_ui functions do. For tdiv and cdiv the remainder can be
negative, so for those the return value is the absolute value of the remainder.

For the 2exp variants the divisor is 2"b. These functions are implemented as right shifts and bit masks, but of course they round the same as the other
functions.

For positive n both mpz_fdiv_q_2exp and mpz_tdiv_q_2exp are simple bitwise right shifts. For negative n, mpz_fdiv_q_2exp is effectively an arithmetic
right shift treating n as twos complement the same as the bitwise logical functions do, whereas mpz_tdiv_q_2exp effectively treats n as sign and

magnitude.

void mpz_mod (mpz_t r, const mpz_t n, const mpz_t d) Set rto n mod d. The sign of the divisor is ignored; the
result is always non-negative.

unsigned long int mpz_mod_ui (mpz_t r, const mpz_t n, unsigned long int d) Set r to n mod d. The sign of the divisor is ignored; the

result is always non-negative.

By andystp Not published yet. Sponsored by ApolloPad.com
cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!
Page 6 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

1eatography

Integer Division Functions (cont)

void mpz_divexact (mpz_t g, const
mpz_t n, const mpz_t d)

void mpz_divexact_ui (mpz_t g, const
mpz_t n, unsigned long d)

int mpz_divisible_p (const mpz_t n,
const mpz_t d)

int mpz_divisible_ui_p (const mpz_t n,
unsigned long int d)

int mpz_divisible_2exp_p (const
mpz_t n, mp_bitcnt_t b)

int mpz_congruent_p (const mpz_t n,
const mpz_t ¢, const mpz_t d)

int mpz_congruent_ui_p (const mpz_t
n, unsigned long int ¢, unsigned long
int d)

int mpz_congruent_2exp_p (const
mpz_t n, const mpz_t ¢, mp_bitcnt_t
b)

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

mpz_mod_ui is identical to mpz_fdiv_r_ui above, returning the remainder as well as setting r. See mpz_fdiv_ui
above if only the return value is wanted.

Set q to n/d. These functions produce correct results only when it is known in advance that d divides n.
Set q to n/d. These functions produce correct results only when it is known in advance that d divides n.

These routines are much faster than the other division functions, and are the best choice when exact division is
known to occur, for example reducing a rational to lowest terms.

Return non-zero if n is exactly divisible by d, or in the case of mpz_divisible_2exp_p by 2"b.
Return non-zero if n is exactly divisible by d, or in the case of mpz_divisible 2exp_p by 2b.
Return non-zero if n is exactly divisible by d, or in the case of mpz_divisible_2exp_p by 2"b.

n is divisible by d if there exists an integer q satisfying n = g*d. Unlike the other division functions, d=0 is accepted
and following the rule it can be seen that only 0 is considered divisible by 0.

Return non-zero if n is congruent to ¢ modulo d, or in the case of mpz_congruent_2exp_p modulo 2"b.

Return non-zero if n is congruent to ¢ modulo d, or in the case of mpz_congruent_2exp_p modulo 2"b.

Return non-zero if n is congruent to ¢ modulo d, or in the case of mpz_congruent_2exp_p modulo 2”b.

n is congruent to ¢ mod d if there exists an integer q satisfying n = ¢ + g*d. Unlike the other division functions, d=0
is accepted and following the rule it can be seen that n and ¢ are considered congruent mod 0 only when exactly
equal.

By andystp

cheatography.com/andystp/

Not published yet.
Last updated 13th February, 2018.
Page 7 of 12.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

Cheatography

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Integer Exponentiation Functions

void mpz_powm (mpz_t rop,
const mpz_t base, const
mpz_t exp, const mpz_t mod)

void mpz_powm_ui (mpz_t
rop, const mpz_t base,
unsigned long int exp, const
mpz_t mod)

void mpz_powm_sec (mpz_t
rop, const mpz_t base, const
mpz_t exp, const mpz_t mod)

void mpz_pow_ui (mpz_t rop,
const mpz_t base, unsigned
long int exp)

void mpz_ui_pow_ui (mpz_t
rop, unsigned long int base,
unsigned long int exp)

Set rop to (base raised to exp) modulo mod.

Set rop to (base raised to exp) modulo mod.

Negative exp is supported if an inverse base”-1 mod mod exists (see mpz_invert in Number Theoretic Functions). If an
inverse doesn'’t exist then a divide by zero is raised.

Set rop to (base raised to exp) modulo mod.

It is required that exp > 0 and that mod is odd.

This function is designed to take the same time and have the same cache access patterns for any two same-size
arguments, assuming that function arguments are placed at the same position and that the machine state is identical
upon function entry. This function is intended for cryptographic purposes, where resilience to side-channel attacks is
desired.

Set rop to base raised to exp. The case 070 yields 1.

Set rop to base raised to exp. The case 070 yields 1.

Integer Root Extraction Functions

int mpz_root (mpz_t rop, const mpz_t op,

unsigned long int n)

void mpz_rootrem (mpz_t root, mpz_t rem, const

mpz_t u, unsigned long int n)

void mpz_sqrt (mpz_t rop, const mpz_t op)

void mpz_sqrtrem (mpz_t rop1, mpz_t rop2,

const mpz_t op)

int mpz_perfect_power_p (const mpz_t op)

Set rop to the truncated integer part of the nth root of op. Return non-zero if the computation was
exact, i.e., if op is rop to the nth power.

Set root to the truncated integer part of the nth root of u. Set rem to the remainder, u-root**n.

Set rop to the truncated integer part of the square root of op.

Set rop1 to the truncated integer part of the square root of op, like mpz_sqrt. Set rop2 to the remainder
op-rop1*rop1, which will be zero if op is a perfect square.

If rop1 and rop2 are the same variable, the results are undefined.

Return non-zero if op is a perfect power, i.e., if there exist integers a and b, with b>1, such that op
equals a raised to the power b.

By andystp

cheatography.com/andystp/

Not published yet.
Last updated 13th February, 2018.
Page 8 of 12.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

Cheatography

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Integer Root Extraction Functions (cont)

Under this definition both 0 and 1 are considered to be perfect powers. Negative values of op are accepted, but of
course can only be odd perfect powers.

int mpz_perfect_square_p (const Return non-zero if op is a perfect square, i.e., if the square root of op is an integer. Under this definition both 0 and 1

mpz_t op)

are considered to be perfect squares.

Integer Number Theoretic Functions

int mpz_probab_prime_p
(const mpz_t n, int reps)

void mpz_nextprime (mpz_t
rop, const mpz_t op)

void mpz_gcd (mpz_t rop,
const mpz_t op1, const
mpz_t op2)

unsigned long int
mpz_gcd_ui (mpz_t rop,
const mpz_t op1, unsigned
long int op2)

Determine whether n is prime. Return 2 if n is definitely prime, return 1 if n is probably prime (without being certain), or
return 0 if n is definitely non-prime.

This function performs some trial divisions, then reps Miller-Rabin probabilistic primality tests. A higher reps value will
reduce the chances of a non-prime being identified as “probably prime”. A composite number will be identified as a prime
with a probability of less than 4*(-reps). Reasonable values of reps are between 15 and 50.

Set rop to the next prime greater than op.

This function uses a probabilistic algorithm to identify primes. For practical purposes it's adequate, the chance of a
composite passing will be extremely small.

Set rop to the greatest common divisor of op1 and op2. The result is always positive even if one or both input operands
are negative. Except if both inputs are zero; then this function defines gcd(0,0) = 0.

Compute the greatest common divisor of op1 and op2. If rop is not NULL, store the result there.

If the result is small enough to fit in an unsigned long int, it is returned. If the result does not fit, 0 is returned, and the result
is equal to the argument op1. Note that the result will always fit if op2 is non-zero.

By andystp

Not published yet. Sponsored by ApolloPad.com

cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!

Page 9 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

Cheatography

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Integer Number Theoretic Functions (cont)

void mpz_gcdext
(mpz_tg, mpz_ts,
mpz_t t, const mpz_t
a, const mpz_t b)

void mpz_lcm (mpz_t
rop, const mpz_t op1,
const mpz_t op2)

void mpz_lcm_ui
(mpz_t rop, const
mpz_t op1, unsigned
long op2)

int mpz_invert (mpz_t
rop, const mpz_t op1,
const mpz_t op2)

int mpz_jacobi (const
mpz_t a, const mpz_t
b)

int mpz_legendre
(const mpz_t a, const
mpz_t p)

int mpz_kronecker
(const mpz_t a, const
mpz_t b)

int mpz_kronecker_si
(const mpz_t a, long b)

int mpz_kronecker_ui
(const mpz_t a,
unsigned long b)

Set g to the greatest common divisor of a and b, and in addition set s and t to coefficients satisfying & + bt = g. The value in g is
always positive, even if one or both of a and b are negative (or zero if both inputs are zero). The values in s and t are chosen
such that normally, abs(s) < abs(b) / (2 g) and abs(t) < abs(a) / (2 g), and these relations define s and t uniquely. There are a few
exceptional cases:

If abs(a) = abs(b), then s = 0, t = sgn(b).

Otherwise, s = sgn(a) if b = 0 or abs(b) =2 g, and t = sgn(b) if a = 0 or abs(a) = 2 g.
In all cases, s = 0 if and only if g = abs(b), i.e., if b dividesaora=b = 0.

If t is NULL then that value is not computed.

Set rop to the least common multiple of op1 and op2. rop is always positive, irrespective of the signs of op1 and op2. rop will be
zero if either op1 or op2 is zero.

Set rop to the least common multiple of op1 and op2. rop is always positive, irrespective of the signs of op1 and op2. rop will be
zero if either op1 or op2 is zero.

Compute the inverse of op1 modulo op2 and put the result in rop. If the inverse exists, the return value is non-zero and rop will
satisfy 0 <= rop < abs(op2) (with rop = 0 possible only when abs(op2) = 1, i.e., in the somewhat degenerate zero ring). If an
inverse doesn’t exist the return value is zero and rop is undefined. The behaviour of this function is undefined when op2 is zero.

Calculate the Jacobi symbol (a/b). This is defined only for b odd.

Calculate the Legendre symbol (a/p). This is defined only for p an odd positive prime, and for such p it’s identical to the Jacobi
symbol.

Calculate the Jacobi symbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.

Calculate the Jacobi symbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.

Calculate the Jacobi symbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.

By andystp
cheatography.com/andystp/

Not published yet.
Last updated 13th February, 2018.
Page 10 of 12.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

Cheatography

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Integer Number Theoretic Functions (cont)

int mpz_si_kronecker (long a, const
mpz_t b)

int mpz_ui_kronecker (unsigned long
a, const mpz_t b)

mp_bitcnt_t mpz_remove (mpz_t rop,
const mpz_t op, const mpz_t)

void mpz_fac_ui (mpz_t rop,
unsigned long int n)

void mpz_2fac_ui (mpz_t rop,
unsigned long int n)

void mpz_mfac_uiui (mpz_t rop,
unsigned long int n, unsigned long int
m)

void mpz_primorial_ui (mpz_t rop,
unsigned long int n)

void mpz_bin_ui (mpz_t rop, const
mpz_t n, unsigned long int k)

void mpz_bin_uiui (mpz_t rop,
unsigned long int n, unsigned long int
k)

void mpz_fib_ui (mpz_t fn, unsigned
long int n)

void mpz_fib2_ui (mpz_t fn, mpz_t
fnsub1, unsigned long int n)

Calculate the Jacobi symbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.

Calculate the Jacobi symbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.

Remove all occurrences of the factor f from op and store the result in rop. The return value is how many such
occurrences were removed.

Set rop to the factorial of n: mpz_fac_ui computes the plain factorial n!, mpz_2fac_ui computes the double-
factorial n!l, and mpz_mfac_uiui the m-multi-factorial nl*(m).

Set rop to the factorial of n: mpz_fac_ui computes the plain factorial n!, mpz_2fac_ui computes the double-
factorial n!l, and mpz_mfac_uiui the m-multi-factorial n!(m).

Set rop to the factorial of n: mpz_fac_ui computes the plain factorial n!, mpz_2fac_ui computes the double-
factorial n!!, and mpz_mfac_uiui the m-multi-factorial n!*(m).

Set rop to the primorial of n, i.e. the product of all positive prime numbers <=n.

Compute the binomial coefficient n over k and store the result in rop. Negative values of n are supported by
mpz_bin_ui, using the identity bin(-n,k) = (-1)"k * bin(n+k-1,k), see Knuth volume 1 section 1.2.6 part G.
Compute the binomial coefficient n over k and store the result in rop. Negative values of n are supported by
mpz_bin_ui, using the identity bin(-n,k) = (-1)*k * bin(n+k-1,k), see Knuth volume 1 section 1.2.6 part G.

mpz_fib_ui sets fn to to F[n], the n’th Fibonacci number. mpz_fib2_ui sets fn to F[n], and fnsub1 to F[n-1].

mpz_fib_ui sets fn to to F[n], the n’th Fibonacci number. mpz_fib2_ui sets fn to F[n], and fnsub1 to F[n-1].

By andystp

cheatography.com/andystp/

Not published yet.
Last updated 13th February, 2018.
Page 11 of 12.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

GNU Multiple Precision - GNU MP - GMP Cheat Sheet
by andystp via cheatography.com/54020/cs/14512/

Cheatography

Integer Number Theoretic Functions (cont)

These functions are designed for calculating isolated Fibonacci numbers. When a sequence of values is wanted it's best
to start with mpz_fib2_ui and iterate the defining F[n+1]=F[n]+F[n-1] or similar.

void mpz_lucnum_ui (mpz_t mpz_lucnum_ui sets In to to L[n], the n’'th Lucas number. mpz_lucnum2_ui sets In to L[n], and Insub1 to L[n-1].
In, unsigned long int n)

void mpz_lucnum2_ui (mpz_t mpz_lucnum_ui sets In to to L[n], the n’th Lucas number. mpz_lucnum2_ui sets In to L[n], and Insub1 to L[n-1].
In, mpz_t Insub1, unsigned
long int n)
These functions are designed for calculating isolated Lucas numbers. When a sequence of values is wanted it's best to

start with mpz_lucnum2_ui and iterate the defining L[n+1]=L[n]+L[n-1] or similar.

The Fibonacci numbers and Lucas numbers are related sequences, so it's never necessary to call both mpz_fib2_ui and
mpz_lucnum?2_ui. The formulas for going from Fibonacci to Lucas can be found in Lucas Numbers Algorithm, the reverse
is straightforward too.

By andystp Not published yet. Sponsored by ApolloPad.com
cheatography.com/andystp/ Last updated 13th February, 2018. Everyone has a novel in them. Finish Yours!
Page 12 of 12. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/andystp/
http://www.cheatography.com/andystp/cheat-sheets/gnu-multiple-precision-gnu-mp-gmp
http://www.cheatography.com/andystp/
https://apollopad.com

	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 1
	Header
	Data Types
	Function Class prefixes
	Initia­liz­ation Functions
	Assignment Functions

	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 2
	Conversion Functions

	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 3
	Arithmetic Functions

	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 4
	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 5
	Integer Division Functions

	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 6
	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 7
	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 8
	Integer Expone­nti­ation Functions
	Integer Root Extraction Functions

	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 9
	Integer Number Theoretic Functions

	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 10
	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 11
	GNU Multiple Precision - GNU MP - GMP Cheat Sheet - Page 12

