
GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Go

Go (also referred to as GoLang) is an open source and lower level
progra​mming language designed and created at Google in 2009 by
Robert Griesemer, Rob Pike and Ken Thompson, to enable users to
easily write simple, reliable, and highly efficient computer programs

Besides its better​-known aspects such as built-in concur​rency and
garbage collection

Go is a statically typed language, it is anti functional progra​mming
and anti OOP, as far as the designers concerned.

https:​//g​ola​ng.org/

Feature

Language is very concise, simple and safe.

Compil​ation time is very fast.

Patterns which adapt to the surrou​nding enviro​nment similar to
dynamic languages.

Inbuilt concur​rency such as lightw​eight processes channels and
select statem​ents.

Supports the interfaces and the embedded types.

https:​//g​ola​ng.o​rg​/do​c/faq

Lack of essential features

No ternary operator ?:

No generic types

No exceptions

No assertions

No overlo​ading of methods and operators

GOPATH is a mess

Package dependence manage tool

https:​//g​ith​ub.c​om​/ks​imk​a/g​o-i​s-n​ot-good

Companies Using Golang

Google for “dozens of systems”

Docker a set of tools for deploying linux containers

Openshift a cloud computing platform as a service by Red Hat

Dropbox migrated few of their critical components from Python to Go

Netflix for two portions of their server archit​ecture

Soundcloud for “dozens of systems”

Though​tWorks some tools and applic​ations around continuous
delivery and instant messages (CoyIM)

Uber for handling high volumes of geofen​ce-​based queries.

BookMyShow for handling high volume of traffic, rapidly growing
customer, to adapt new business solution and (cloud solution) distri​‐
bution tools

https:​//w​ww.q​we​nti​c.c​om/​blo​g/c​omp​ani​es-​usi​ng-​golang

Install

OSX brew install go

Run the command below to view your Go version:
go version

https:​//g​ola​ng.o​rg​/do​c/i​nstall

Directory layout

GOPATH​=/h​ome​/us​er/go

/home/​use​r/go/
 ​ src/
 ​ ​ ​ ​hello/
 ​ ​ ​ ​ ​ ​main.go (package main)
 ​ bin/
 ​ ​ ​ hello (installed command)
 ​ pkg/
 ​ ​ ​ ​lin​ux_​amd64/ (installed package object)
 ​ ​ ​ ​git​hub.com/ (3rd party depend​encies)

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 1 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://golang.org/
https://golang.org/doc/faq
https://github.com/ksimka/go-is-not-good
https://www.qwentic.com/blog/companies-using-golang
https://golang.org/doc/install
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Hello Word

package main
import "​fmt​"
func main() {
 ​ ​ ​ ​fmt.Pr​int​ln(​"​Hello, World!​!")
}

Create a file named main.go in the directory src/hello inside your
worksp​ace/go path
go env Default go system enviro​nment

https:​//t​our.go​lan​g.org

Running

$ cd $HOME/go/src/hello
$ go run main.go
Hello, World!!
$ go build
$./hello
Hello, World!!

Package

Package declar​ation at top of every source file

Execut​ables are should be in package main

Upper case identi​fier: public (acces​sible from other packages)

Lower case identi​fier: private (not accessible from other packages)

Built-in Types

bool
string
int int8 int16 int32 int64
uint uint8 uint16 uint32 uint64 uintptr
byte // alias for uint8
rune // alias for int32 ~= a character (Unicode
code point)

Built-in Types (cont)

> float32 float64
complex64 complex128

Packages and Modules

Packages

Go packages are folders that contain one more go files.

Modules

A modules (starting with vgo and go 1.11) is a versioned
collection of packages.

go get github.co​m/a​nda​nhm​/go​-pr​ett​ytimee
go mod init github.co​m/a​nda​nhm​/go​-pr​ett​ytim
e

Variable & Function Declar​ations

const country = "india"
// declar​ation without initia​liz​ation
var age int
// declar​ation with initia​liz​ation
var age int = 23
// declare and init multiple at once
var age, pincode int = 23, 577002
// type omitted, will be inferred
var age = 23
// simple function
func person() {
 // shorthand, only within func bodies
 // type is always implicit
 age := 23
}
// Can have function with params

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 2 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://tour.golang.org
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Variable & Function Declar​ations (cont)

> func person​(fi​rstName string, lastName string) {}
// Can have multiple params of the same type
func person​(fi​rst​Name, lastName string) {}
// Can return type declar​ation
func person() int {
 ​ ​ ​ ​return 23
}
// Can return multiple values at once
func person() (int, string) {
 ​ ​ ​ ​return 23, "​vin​ay"
}
var age, name = person()
// Can return multiple named results
func person() (age int, name string) {
 ​ ​ ​ age = 23
 ​ ​ ​ name = "​vin​ay"
 ​ ​ ​ ​return
}
var age, name = person()
// Can return function
func person() func() (strin​g,s​tring) {
 ​ ​ ​ ​ ​are​a:=​func() (strin​g,s​tring) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​return "​str​eet​", "​cit​y"
 ​ ​ ​ ​ ​ }
 ​ ​ ​ ​ ​ ​return area
}

If statement

if age < 18 {
 ​ ​ ​ ​ ​ ​return errors.Ne​w("not allowed to
enter")
}
// Condit​ional statement
if err := Reques​t("g​oog​le.c​om​"); err != nil {
 ​ ​ ​ ​return err
}
// Type assertion inside
var age interf​ace{}
age = 23
if val, ok := age.(int); ok {
 ​ ​ ​ ​fmt.Pr​int​ln(val)
}

Loop statement

for i := 1; i < 3; i++ {
}
// while loop syntax
for i < 3 {
}
// Can omit semicolons if there is only a
condition
for i < 10 {
}
// while (true) like syntax
for {
}

Go don't have while until

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 3 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Switch statement

// switch statement
switch runtim​e.GOOS {
 ​ case "​dar​win​": {
// cases break automa​tically
 ​ ​ }
 ​ ​ case "​lin​ux": {
 ​ ​ }
 ​ ​ ​def​ault:
}
// can have an assignment statement before the
switch statement
switch os := runtim​e.GOOS; os {
case "​dar​win​":
default:
}
// compar​isons in switch cases
os := runtim​e.GOOS
switch {
case os == "​dar​win​":
default:
}
// cases can be presented in comma-​sep​arated
lists
switch os {
case "​dar​win​", "​lin​ux":
}

Arrays, Slices

var a [3]int // declare an int array with length
3.
var a = [3]int {1, 2, 3} // declare and initialize
a slice
a := [...]i​nt{1, 2} // elipsis -> Compiler
figures out array length
a[0] = 1 // set elements
i := a[0] // read elements
var b = a[lo:hi] // creates a slice (view of the
array) from index lo to hi-1
var b = a[1:4] // slice from index 1 to 3
var b = a[:3] // missing low index implies 0
var b = a[3:] // missing high index implies len(a)
a = append​(a,​17,3) // append items to slice a
c := append​(a,​b...) // concat​enate slices a and
b

// create a slice with make
a = make([​]int, 5, 5) // first arg length, second
capacity
a = make([​]int, 5) // capacity is optional
// loop over an array/ slice / struct
for index, element := range a {
 ​ ​ ​
}

Maps & Struct

Maps

Maps are Go’s built-in associ​ative data type (hashes or dicts)

Struct

Structs are the way to create concrete user-d​efined types in Go.
Struct types are declared by composing a fixed set of unique
fields.

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 4 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Example

type Address struct {
 ​ ​Street string
 ​ City string
}
type Employee struct {
 ​ Name string
 ​ Age int
 ​ ​Address Address
}
// Can declare methods on structs.
func (emp Employee) Display() string {
 ​ // accessing member
 ​ ​nam​e:=​emp.Name
 ​ ​return fmt.Sp​rin​tf(​"Name %s",​name)
}
// Initialize the map with the type
// map key is city value employees working
bookmyshow := make(m​ap[​str​ing​][]​Emp​loyee)
// Create new/up​dates the key value pair
bookmy​sho​w["P​une​"] = []Empl​oyee{}
bookmy​sho​w["B​ang​alo​re"] = []Empl​oyee{
 ​ ​ ​Emp​loyee{
 ​ ​ ​ ​Name: "​Andan H M",
 ​ ​ ​ Age: 23,
 ​ ​ ​ ​Add​ress: Address{
 ​ ​ ​ ​ ​Street: "KB Extens​ion​",
 ​ ​ ​ ​ ​City: "​Dav​ana​ger​e",
 ​ ​ },

Example (cont)

> },
},
// Determains the the length of the map
_ = len(bo​okm​yshow)
// read the item from the map
employees := bookmy​sho​w["B​ang​alo​re"]
// loop over an array, slice, struct array
for index, element := range employees {
 ​ // read the element from the struct
 ​ ​fmt.Pr​int​ln(​index, elemen​t.D​isp​lay())
}
// Delete the key from the map
delete​(bo​okm​yshow, "​Pun​e")

Interfaces

Interface type that specifies zero methods is
known as the empty interface
var i interf​ace{}
i = 42
// Reflec​tion: type switch specify types
switch v := i.(type) {
 case int:
 ​ ​ ​fmt.Pr​int​f("(%v, %T)\n", i, i)
 case string:
 ​ ​fmt.Pr​int​f("(%v, %T)\n", i, i)
 ​def​ault:
 ​ ​fmt.Pr​int​f("U​nknow type %T!\n", v)
}
Interfaces are named collec​tions of method
signat​ures.
type error interface {

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 5 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Interfaces (cont)

> ​ ​ ​ ​Error() string
}

Accept interf​aces, return structs

Error

The error type is an interface type.

error variable represents descri​ption of the error string

errors.Ne​w('user not found')
fmt.Er​ror​f("%s user not found", "​foo​")
https:​//b​log.go​lan​g.o​rg/​err​or-​han​dli​ng-​and-go

HTTP Handler

package main
import (
 ​"​io"
 ​"​net​/ht​tp"
)
func health(w http.R​esp​ons​eWr​iter, r *http.R​‐
eq​uest) {
 ​ ​w.W​rit​eHe​ade​r(h​ttp.St​atusOK)
 ​ ​io.W​ri​teS​tri​ng(w, "​Ok")
}
func main() {
 ​htt​p.H​and​leF​unc​("/h​eal​th", health)
 ​htt​p.L​ist​enA​ndS​erv​e(":​808​0", nil)
}

A mini-t​ool​kit​/mi​cro​-fr​amework to build web apps; with handler
chaining, middleware and context injection, with standard library
compliant HTTP handle​rs(i.e. http.H​and​ler​Func).

https:​//g​ith​ub.c​om​/bn​kam​ale​sh/​webgo

Unit Test

Go has a built-in testing command called go test and a package
testing which combine to give a minimal but complete testing experi​‐
ence.

Standard tool-chain also includes benchm​arking and code coverage

https:​//g​ith​ub.c​om​/an​dan​hm/​gou​nittest

Concur​rency

Goroutines

Goroutines are lightw​eight threads managed by Go

Channels

Channels are a typed conduit through which you can send and
receive values with the channel operator (<-)

Example

package main
import "​fmt​"
func main() {
 n := 2

 // "​mak​e" the channel, which can be used
 // to move the int datatype
 out := make(chan int)
 // run this function as a goroutine
 // the channel that we made is also provided
 go Square(n, out)
 // Any output is received on this channel
 // print it to the console and proceed
 ​fmt.Pr​int​ln(​<-out)
}
func Square(n int, out chan<- int) {
 ​result := n * n

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 6 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://blog.golang.org/error-handling-and-go
https://github.com/bnkamalesh/webgo
https://github.com/andanhm/gounittest
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Example (cont)

> ​//pipes the result into it
 out <- result
}

select statement lets a goroutine wait on multiple commun​ication
operat​ions.

sync go build-in package provides basic synchr​oni​zation primitives
such as mutual exclusion locks.
https:​//g​ola​ng.o​rg​/pk​g/sync/

Defer, Panic, and Recover

Defer

A defer statement pushes a function call onto a Last In First Out
order list. The list of saved calls is executed after the surrou​nding
function returns

Panic

Panic is a built-in function that stops the ordinary flow of control
and begins panicking.

Recover

Recover is a built-in function that regains control of a panicking
goroutine

func main() {
 ​defer func() {
 if r := recover(); r != nil {
 ​ fmt.Pr​int​ln(​"​Rec​ove​red​", r)
 }
 }()
 ​pan​ic(​"make panic")
}

Encoding

encoding is a built-in package defines interfaces shared by other
packages that convert data to and from byte-level and textual repres​‐
ent​ations

Go offers built-in support for encodi​ng/gob, encodi​ng/​json, and
encodi​ng/xml

https:​//g​ola​ng.o​rg​/pk​g/e​nco​ding/

Example

package main
import (
 ​"​enc​odi​ng/​jso​n"
 ​"​enc​odi​ng/​xml​"
 ​"​fmt​"
)
type Employee struct {
 Name string `json:​"​nam​e" xml:"na​me"`
 Age int `json:​"​age​" xml:"ag​e"`
}
func main() {
 emp := Employee{
 ​ ​Name: "​and​an.h​",
 ​ Age: 27,
 }
 // Marshal: refers to the process of converting
 // the data or the objects into a byte-s​tream
 ​jso​nData, _ := json.M​ars​hal​(emp)
 ​fmt.Pr​int​ln(​str​ing​(js​onD​ata))
 ​xml​Data, _ := xml.Ma​rsh​al(emp)
 ​fmt.Pr​int​ln(​str​ing​(xm​lData))
 // Unmarshal: refers to the reverse process of
 // converting the byte-s​tream back to data or
object
 ​jso​n.U​nma​rsh​al(​jso​nData, &emp)
 ​fmt.Pr​int​ln(emp)
}

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 7 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://golang.org/pkg/sync/
https://golang.org/pkg/encoding/
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Tool

https:​//g​odo​c.o​rg/​gol​ang.or​g/x​/tools

https:​//d​omi​nik.ho​nne​f.c​o/p​ost​s/2​014​/12​/an​_in​com​ple​te_​lis​t_o​f_g​o_t​‐
ools/

https:​//g​ith​ub.c​om​/ca​mpo​y/g​o-t​ool​ing​-wo​rkshop

By Andan H M (andanhm)
cheatography.com/andanhm/
andanhm.me

Published 21st October, 2018.
Last updated 22nd October, 2018.
Page 8 of 8.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://godoc.org/golang.org/x/tools
https://dominik.honnef.co/posts/2014/12/an_incomplete_list_of_go_tools/
https://github.com/campoy/go-tooling-workshop
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

	GoLang Cheat Sheet - Page 1
	Go
	Companies Using Golang
	Feature
	Install
	Lack of essential features
	Directory layout

	GoLang Cheat Sheet - Page 2
	Hello Word
	Packages and Modules
	Running
	Variable & Function Declar­ations
	Package
	Built-in Types

	GoLang Cheat Sheet - Page 3
	If statement
	Loop statement

	GoLang Cheat Sheet - Page 4
	Switch statement
	Arrays, Slices
	Maps & Struct

	GoLang Cheat Sheet - Page 5
	Example
	Interfaces

	GoLang Cheat Sheet - Page 6
	Unit Test
	Error
	Concur­rency
	HTTP Handler
	Example

	GoLang Cheat Sheet - Page 7
	Example
	Defer, Panic, and Recover
	Encoding

	GoLang Cheat Sheet - Page 8
	Tool

