GolLang Cheat Sheet

Cheatography

Go (also referred to as GolLang) is an open source and lower level
programming language designed and created at Google in 2009 by
Robert Griesemer, Rob Pike and Ken Thompson, to enable users to
easily write simple, reliable, and highly efficient computer programs

Besides its better-known aspects such as built-in concurrency and
garbage collection

Go is a statically typed language, it is anti functional programming and anti
OOP, as far as the designers concerned.

https://golang.org/

Language is very concise, simple and safe.
Compilation time is very fast.

Patterns which adapt to the surrounding environment similar to dynamic
languages.

Inbuilt concurrency such as lightweight processes channels and select
statements.

Supports the interfaces and the embedded types.

https://golang.org/doc/faq

Lack of essential features

No ternary operator ?:

No generic types

No exceptions

No assertions

No overloading of methods and operators
COPATHTSa™ESS
‘Packagedependence mamage toot

https://github.com/ksimka/go-is-not-good

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 1 of 8.

Published 21st October, 2018.
Last updated 22nd October, 2018.

by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Companies Using Golang

Google for “dozens of systems”

Docker a set of tools for deploying linux containers

Openshift a cloud computing platform as a service by Red Hat
Dropbox migrated few of their critical components from Python to Go
Netflix for two portions of their server architecture

Soundcloud for “dozens of systems”

ThoughtWorks some tools and applications around continuous delivery
and instant messages (CoyIM)

Uber for handling high volumes of geofence-based queries.

BookMyShow for handling high volume of traffic, rapidly growing
customer, to adapt new business solution and (cloud solution)
distribution tools

https://www.qwentic.com/blog/companies-using-golang

0OSX brew install go

Run the command below to view your Go version:

go version

https://golang.org/doc/install

Directory layout

GOPATH=/home/user/go

/home/user/go/

src/

hello/
main.go (package main)

bin/
hello (installed command)

pkg/
linux_amd64/ (installed package object)
github.com/ (3rd party dependencies)

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://golang.org/
https://golang.org/doc/faq
https://github.com/ksimka/go-is-not-good
https://www.qwentic.com/blog/companies-using-golang
https://golang.org/doc/install
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

GolLang Cheat Sheet

Cheatography

Hello Word

package main
import "fmt"
func main() {

fmt.Println("Hello, World!!")

Create a file named main.go in the directory src/hello inside your
workspace/go path
go env Default go system environment

https://tour.golang.org

by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Built-in Types (cont)

float32 float64

complex64 complexl128

Packages and Modules

Packages
| Go packages are folders that contain one more go files.
Modules

A modules (starting with vgo and go 1.11) is a versioned collection of
packages.

$ cd $HOME/go/src/hello
$ go run main.go

Hello, World!!

$ go build

$./hello

Hello, World!!

Package

Package declaration at top of every source file
Executables are should be in package main
Upper case identifier: public (accessible from other packages)

Lower case identifier: private (not accessible from other packages)

Built-in Types

bool

string

int int8 intl6 int32 inté64

uint uint8 uintl6é uint32 uint64 uintptr

byte // alias for uint8

rune // alias for int32 ~= a character (Unicode code

point)

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 2 of 8.

Published 21st October, 2018.
Last updated 22nd October, 2018.

go get github.com/andanhm/go-prettytimee

go mod init github.com/andanhm/go-prettytime

Variable & Function Declarations

const country = "india"
// declaration without initialization
var age int
// declaration with initialization
var age int = 23
// declare and init multiple at once
var age, pincode int = 23, 577002
// type omitted, will be inferred
var age = 23
// simple function
func person() {
// shorthand, only within func bodies
// type is always implicit
age := 23
}

// Can have function with params

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://tour.golang.org
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

GolLang Cheat Sheet

graphy by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

func person (firstName string, lastName string) {} if age < 18 {
// Can have multiple params of the same type return errors.New("not allowed to enter")
func person(firstName, lastName string) {} }
// Can return type declaration // Conditional statement
func person() int { if err := Request("google.com"); err != nil {
return 23 return err
} }
// Can return multiple values at once // Type assertion inside
func person() (int, string) { var age interfacef{}
return 23, "vinay" age = 23
} if val, ok := age. (int); ok {
var age, name = person () fmt.Println(val)
// Can return multiple named results }
func person() (age int, name string) {
name = "vinay" for i := 1; i < 3; i++ {
return

}

! // while loop syntax

var age, name = person () fow 5 < @ 0

}

// Can return function

func person func string, strin L
® 0 0« Y 9) 1 // Can omit semicolons if there is only a condition
area:=f tring,stri .
re unc () (string,string) { for 1 < 10 |
return "street", "city"

}

} // while (true) like syntax

return area
for {

}

Go don't have while until

By Andan H M (andanhm) Published 21st October, 2018. Sponsored by Readability-Score.com
cheatography.com/andanhm/ Last updated 22nd October, 2018. Measure your website readability!
andanhm.me Page 3 of 8. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

graphy by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Switch statement

// switch statement
switch runtime.GOOS {
case "darwin": {
// cases break automatically
}
case "linux": {
}
default:
}
// can have an assignment statement before the switch
statement
switch os := runtime.GOOS; os {
case "darwin":
default:
}

// comparisons in switch cases

os := runtime.GOOS
switch {

case os == "darwin":
default:

}

// cases can be presented in comma-separated lists
switch os {

case "darwin", "linux":

}

GolLang Cheat Sheet

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 4 of 8.

Published 21st October, 2018.
Last updated 22nd October, 2018.

Arrays, Slices

var a [3]int // declare an int array with length 3.

var a = [3]int {1, 2, 3} // declare and initialize a
slice
a := [...]lint{1, 2} // elipsis -> Compiler figures out

array length

al0] = 1 // set elements

i := a[0] // read elements

var b = a[lo:hi] // creates a slice (view of the
array) from index lo to hi-1

var b = a[l:4] // slice from index 1 to 3

var b = a[:3] // missing low index implies 0

var b = a[3:] // missing high index implies len(a)
a = append(a,17,3) // append items to slice a

c := append(a,b...) // concatenate slices a and b

// create a slice with make

a = make([lint, 5, 5) // first arg length, second
capacity

a = make([lint, 5) // capacity is optional

// loop over an array/ slice / struct

for index, element := range a {

}
Maps & Struct

Maps
| Maps are Go’s built-in associative data type (hashes ordicts)
Struct

Structs are the way to create concrete user-defined types in Go. Struct
types are declared by composing a fixed set of unique fields.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

raphy

type Address struct {

Street string
City string
}
type Employee struct {
Name string
Age int
Address Address
}
// Can declare methods on structs.
func (emp Employee) Display () string {
// accessing member
name: =emp . Name
return fmt.Sprintf ("Name %s",name)
}
// Initialize the map with the type
// map key is city value employees working
bookmyshow := make (map[string] []Employee)

// Create new/updates the key value pair

bookmyshow ["Pune"] = []Employee{}
bookmyshow ["Bangalore"] = []Employeef{
Employee {

Name: "Andan H M",

Age: 23,

Address: Address{
Street: "KB Extension",
City: "Davanagere",

by

GolLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

By Andan H M (andanhm)

Published 21st October, 2018.
cheatography.com/andanhm/ Last updated 22nd October, 2018.
andanhm.me Page 5 of 8.

Example (cont)

1
1
// Determains the the length of the map
_ = len (bookmyshow)
// read the item from the map
employees := bookmyshow["Bangalore"]

// loop over an array, slice, struct array
for index, element := range employees {
// read the element from the struct

fmt.Println (index, element.Display())
}
// Delete the key from the map

delete (bookmyshow, "Pune")

Interface type that specifies zero methods is known as

the empty interface
var i interface({}
i = 42

// Reflection: type switch specify types

switch v := i. (type) {
case int:
fmt.Printf (" (%v, %T)\n", i, 1)

case string:
fmt.Printf (" (%v, %T)\n", i, i)
default:
fmt.Printf ("Unknow type %T!\n", v)
}
Interfaces are named collections of method
signatures.

type error interface {

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

GolLang Cheat Sheet

Cheatography

Interfaces (cont)

Error () string

}

Accept interfaces, return structs

The error type is an interface type.

error variable represents description of the error string

errors.New('user not found')
fmt.Errorf ("%s user not found", "foo")

https://blog.golang.org/error-handling-and-go

HTTP Handler

package main
import (
n io n
"net/http"
)
func health(w http.ResponseWriter, r *http.Request) {
w.WriteHeader (http.StatusOK)
io.WriteString (w, "Ok")

}

func main() {
http.HandleFunc (" /health", health)
http.ListenAndServe (":8080", nil)

}

A mini-toolkit/micro-framework to build web apps; with handler chaining,
middleware and context injection, with standard library compliant HTTP
handlers(i.e. http.HandlerFunc).

https://github.com/bnkamalesh/webgo

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 6 of 8.

Published 21st October, 2018.
Last updated 22nd October, 2018.

by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Unit Test

Go has a built-in testing command called go test and a package testing
which combine to give a minimal but complete testing experience.

Standard tool-chain also includes benchmarking and code coverage

https://github.com/andanhm/gounittest

Concurrency

Goroutines

| Goroutines are lightweight threads managed by Go
Channels

Channels are a typed conduit through which you can send and receive
values with the channel operator (<-)

package main

import "fmt"

func main() {

n := 2

// "make" the channel, which can be used
// to move the int datatype

out := make(chan int)

// run this function as a goroutine

// the channel that we made is also provided
go Square (n, out)

// Any output is received on this channel
// print it to the console and proceed
fmt.Println(<-out)
}
func Square(n int, out chan<- int) {

result :=n * n

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://blog.golang.org/error-handling-and-go
https://github.com/bnkamalesh/webgo
https://github.com/andanhm/gounittest
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

GolLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Cheatography

//pipes the result into it package main

out <- result import (
} "encoding/json"
select statement lets a goroutine wait on multiple communication SeEeng L
operations. " Emet

)

sync go build-in package provides basic synchronization primitives such type Employee struct {
as mutual exclusion locks. Name string 'json:"name" xml:"name"’

https://golang.org/pkg/sync/ Aee fut “dsemnsTaged smils Tagen®

}

Defer, Panic, and Recover

func main() {
Defer emp := Employee{
A defer statement pushes a function call onto a Last In First Out order Name: "andan.h",
list. The list of saved calls is executed after the surrounding function Age: 27,
returns }
Panic // Marshal: refers to the process of converting

- s . . he d hi b i =
Panic is a built-in function that stops the ordinary flow of control and // the data or the objects into a byte-stream

begins panicking. jsonData, _ := json.Marshal (emp)

fmt.Println(string (jsonData))
Recover

xmlData, _ := xml.Marshal (emp)

Recover is a built-in function that regains control of a panicking fmt.Println (string (xmlData))

goroutine
// Unmarshal: refers to the reverse process of
func main() { // converting the byte-stream back to data or object
defer func() { json.Unmarshal (jsonData, &emp)
if r := recover(); r != nil { fmt.Println (emp)
fmt.Println("Recovered", r) }

}
Q)
panic ("make panic")

}

encoding is a built-in package defines interfaces shared by other

packages that convert data to and from byte-level and textual
representations

Go offers built-in support for encoding/gob, encoding/json, and
encoding/xml

https://golang.org/pkg/encoding/

By Andan H M (andanhm) Published 21st October, 2018. Sponsored by Readability-Score.com
cheatography.com/andanhm/ Last updated 22nd October, 2018. Measure your website readability!
andanhm.me Page 7 of 8. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://golang.org/pkg/sync/
https://golang.org/pkg/encoding/
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

GolLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

https://godoc.org/golang.org/x/tools

Cheatography

https://dominik.honnef.co/posts/2014/12/an_incomplete_list_of_go_tools/

https://github.com/campoy/go-tooling-workshop

By Andan H M (andanhm) Published 21st October, 2018. Sponsored by Readability-Score.com
cheatography.com/andanhm/ Last updated 22nd October, 2018. Measure your website readability!

andanhm.me Page 8 of 8. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://godoc.org/golang.org/x/tools
https://dominik.honnef.co/posts/2014/12/an_incomplete_list_of_go_tools/
https://github.com/campoy/go-tooling-workshop
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readability-score.com

	GoLang Cheat Sheet - Page 1
	Go
	Companies Using Golang
	Feature
	Install
	Lack of essential features
	Directory layout

	GoLang Cheat Sheet - Page 2
	Hello Word
	Packages and Modules
	Running
	Variable & Function Declar­ations
	Package
	Built-in Types

	GoLang Cheat Sheet - Page 3
	If statement
	Loop statement

	GoLang Cheat Sheet - Page 4
	Switch statement
	Arrays, Slices
	Maps & Struct

	GoLang Cheat Sheet - Page 5
	Example
	Interfaces

	GoLang Cheat Sheet - Page 6
	Unit Test
	Error
	Concur­rency
	HTTP Handler
	Example

	GoLang Cheat Sheet - Page 7
	Example
	Defer, Panic, and Recover
	Encoding

	GoLang Cheat Sheet - Page 8
	Tool

