GoLang Cheat Sheet
Cheatography R

Go (also referred to as GolLang) is an open source and lower level

programming language designed and created at Google in 2009 by
Robert Griesemer, Rob Pike and Ken Thompson, to enable users to
easily write simple, reliable, and highly efficient computer programs

Besides its better-known aspects such as built-in concurrency and
garbage collection

Go is a statically typed language, it is anti functional programming
and anti OOP, as far as the designers concerned.

https://golang.org/

Feature

Language is very concise, simple and safe.
Compilation time is very fast.

Patterns which adapt to the surrounding environment similar to
dynamic languages.

Inbuilt concurrency such as lightweight processes channels and
select statements.

Supports the interfaces and the embedded types.

https://golang.org/doc/faq

Lack of essential features

No ternary operator ?:

No generic types

No exceptions

No assertions

No overloading of methods and operators
SOPATHHsamess
Package-gdependencemeanage-toot
https://github.com/ksimka/go-is-not-good

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 1 of 8.

Published 21st October, 2018.
Last updated 22nd October, 2018.

by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Companies Using Golang

Google for “dozens of systems”

Docker a set of tools for deploying linux containers

Openshift a cloud computing platform as a service by Red Hat
Dropbox migrated few of their critical components from Python to Go
Netflix for two portions of their server architecture

Soundcloud for “dozens of systems”

ThoughtWorks some tools and applications around continuous
delivery and instant messages (CoylM)

Uber for handling high volumes of geofence-based queries.
BookMyShow for handling high volume of traffic, rapidly growing

customer, to adapt new business solution and (cloud solution) distri-
bution tools

https://www.qwentic.com/blog/companies-using-golang

0OSX brew install go

Run the command below to view your Go version:

go version

https://golang.org/doc/install

Directory layout
GOPATH=/home/user/go

/home/user/go/

src/

hello/
main.go (package main)

bin/
hello (installed command)

pkga/
linux_amd64/ (installed package object)
github.com/ (3rd party dependencies)

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://golang.org/
https://golang.org/doc/faq
https://github.com/ksimka/go-is-not-good
https://www.qwentic.com/blog/companies-using-golang
https://golang.org/doc/install
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
Cheatography R

Hello Word

package main
import " fmt "
func main () {
fmt.Pr int 1n(

" Hello, World! !M)

}

Create a file named main.go in the directory src/hello inside your
workspace/go path
go env Default go system environment

https://tour.golang.org

$ cd $HOME/go/src/hello
$ go run main.go

Hello, World!!
$ go build

$./hello

Hello, World!!

Package

Package declaration at top of every source file
Executables are should be in package main
Upper case identifier: public (accessible from other packages)

Lower case identifier: private (not accessible from other packages)

Built-in Types

bool

string

int int8 intl6 int32 int64

uint uint8 uintl6 uint32 uint64 uintptr
byte // alias for uint8

rune // alias for int32 ~= a character

(Unicode

code point)

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 2 of 8.

by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Built-in Types (cont)

> float32 float64
complex64 complex128

Packages and Modules

Packages

| Go packages are folders that contain one more go files.
Modules

A modules (starting with vgo and go 1.11) is a versioned
collection of packages.

go get github.co m/a nda nhm /go -pr ett ytimee
go mod init github.co m/a nda nhm /go -pr ett ytim

Variable & Function Declarations

| (D

const country = "india"

// declar ation without initia liz ation

var age int

// declar ation with initia liz ation

var age int = 23

// declare and init multiple at once

var age, pincode int = 23, 577002
// type omitted, will be inferred

var age = 23

// simple function

func person() {
// shorthand, only within func bodies
// type is always implicit

age := 23

}

// Can have function with params

Published 21st October, 2018.
Last updated 22nd October, 2018.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://tour.golang.org
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Variable & Function Declarations (cont) If statement

> func person(firstName string, lastName string) {} if age < 18 {

Cheatography

/I Can have multiple params of the same type return errors.Ne w("not allowed to

func person(firstName, lastName string) {} enter")

/I Can return type declaration
func person() int {
return 23
}
/I Can return multiple values at once
func person() (int, string) {
return 23, "vinay"
}
var age, name = person()
/I Can return multiple named results
func person() (age int, name string) {
age = 23
name = "vinay"
return
}
var age, name = person()
/I Can return function
func person() func() (string,string) {

}

// Condit ional statement

if err := Reques t("g oog le.c om "); err != nil {
return err

}

// Type assertion inside

var age interf acef{}

age = 23

if val, ok := age. (int); ok {

fmt.Pr int 1ln(val)

Loop statement

|

for i := 1; 1 < 3; i++ {
}
// while loop syntax

for i < 3 {

area:=func() (string,string) {)

return "street", "city"
y // Can omit semicolons if there is only a

}

return area

condition

for 1 < 10 {

}

// while (true) like syntax

for {
}

Go don't have while until

By Andan H M (andanhm) Published 21st October, 2018. Sponsored by Readable.com
cheatography.com/andanhm/ Last updated 22nd October, 2018. Measure your website readability!
andanhm.me Page 3 of 8. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Cheatography

Switch statement

Arrays, Slices

// switch statement var a [3]int // declare an int array with length
switch runtim e.GOOS { 3o
case " dar win ": { var a = [3]int {1, 2, 3} // declare and initialize

// cases break automa tically a slice

} a := [...]1 nt{l, 2} // elipsis -> Compiler

case " lin ux": { figures out array length

} al[0] = 1 // set elements

def ault: i := a[0] // read elements
} var b = a[lo:hi] // creates a slice (view of the
// can have an assignment statement before the array) from index lo to hi-1
switch statement var b = a[l:4] // slice from index 1 to 3
switch os := runtim e.GOOS; os { var b = a[:3] // missing low index implies 0
case " dar win ": var b = a[3:] // missing high index implies len(a)
default: a = append (a, 17,3) // append items to slice a
} c := append (a, b...) // concat enate slices a and
// compar isons in switch cases b
os := runtim e.GOOS
switch { // create a slice with make
case os == " dar win ": a = make([J]int, 5, 5) // first arg length, second
default: capacity
} a = make ([]lint, 5) // capacity is optional
// cases can be presented in comma- sep arated // loop over an array/ slice / struct
lists for index, element := range a {

switch os {

case " dar win ", " lin ux": }
}
Maps & Struct
Maps
| Maps are Go’s built-in associative data type (hashes or dicts)
Struct
Structs are the way to create concrete user-defined types in Go.
Struct types are declared by composing a fixed set of unique
fields.
By Andan H M (andanhm) Published 21st October, 2018. Sponsored by Readable.com
cheatography.com/andanhm/ Last updated 22nd October, 2018. Measure your website readability!

andanhm.me Page 4 of 8. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet

Cheatography

type Address struct {
Street string

City string
}
type Employee struct ({

Name string

Age int

Address Address
}
// Can declare methods on structs.
func (emp Employee) Display() string {
// accessing member
nam e:= emp.Name
return fmt.Sp rin tf("Name %s", name)
}
// Initialize the map with the type
// map key is city value employees working
bookmyshow := make(m ap[str ing][] Emp loyee)

// Create new/up dates the key value pair

bookmy sho w["P une "] = []Empl oyee({}
bookmy sho w["B ang alo re"] = []Empl oyee({
Emp loyee({
Name: " Andan H M",
Age: 23,
Add ress: Address/{
Street: "KB Extens ion ",
City: " Dav ana ger e",

}’

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 5 of 8.

Published 21st October, 2018.
Last updated 22nd October, 2018.

by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Example (cont)

>},

h

/I Determains the the length of the map

_ = len(bookmyshow)

/I read the item from the map

employees := bookmyshow["Bangalore"]

/I'loop over an array, slice, struct array

for index, element := range employees {
/I read the element from the struct
fmt.Printin(index, element.Display())

}

/I Delete the key from the map

delete(bookmyshow, "Pune")

Interfaces

Interface type that specifies zero methods is
known as the empty interface
var i1 interf ace{}
i = 42
// Reflec tion: type switch specify types
switch v := i. (type) {
case int:
fmt.Pr int £("(%v, %T)\n", i, 1)

case string:

fmt.Pr int £(" (%v, $T)\n", i, 1)

def ault:

fmt.Pr int £("U nknow type $T!\n", v)
}
Interfaces are named collec tions of method

signat ures.

type error interface {

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
Cheatography R

Interfaces (cont)

> Error() string

}

Accept interfaces, return structs

Error

The error type is an interface type.

error variable represents description of the error string

errors.Ne w('user not found')
fmt.Er ror f("%s user not found", " foo ")

https://blog.golang.org/error-handling-and-go

HTTP Handler

package main
import (

" "

io
" net /ht tp"
)
func health(w http.R esp ons eWr iter, r *http.R -
eq uest) {
w.W rit eHe ade r(h ttp.St atusOK)
io.W ri teS tri ng(w, " Ok")
}
func main () {
htt p.H and leF unc ("/h eal th", health)
htt p.L ist enA ndS erv e(": 808 0",

}

nil)

A mini-toolkit/micro-framework to build web apps; with handler
chaining, middleware and context injection, with standard library
compliant HTTP handlers(i.e. http.HandlerFunc).

https://github.com/bnkamalesh/webgo

By Andan H M (andanhm)
cheatography.com/andanhm/

andanhm.me Page 6 of 8.

by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Unit Test

Go has a built-in testing command called go test and a package
testing which combine to give a minimal but complete testing experi-

ence.

Standard tool-chain also includes benchmarking and code coverage

https://github.com/andanhm/gounittest

Concurrency

Goroutines
| Goroutines are lightweight threads managed by Go
Channels

Channels are a typed conduit through which you can send and
receive values with the channel operator (<-)

package main
import " fmt "
func main () {

n := 2

// ™ mak e" the channel, which can be used

// to move the int datatype

out := make (chan int)

// run this function as a goroutine

// the channel that we made is also provided

go Square (n, out)

// Any output is received on this channel
// print it to the console and proceed
fmt.Pr int 1n(

}

func Square(n int,

<-out)

out chan<- int) {

result := n * n

Published 21st October, 2018.
Last updated 22nd October, 2018.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://blog.golang.org/error-handling-and-go
https://github.com/bnkamalesh/webgo
https://github.com/andanhm/gounittest
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Cheatography

> //pipes the result into it package main
out <- result import (
} " enc odi ng/ jso n"

"

select statement lets a goroutine wait on multiple communication enc odi ng/ xml "

operations. " fmt "
)
sync go build-in package provides basic synchronization primitives type Employee struct {
such as mutual exclusion locks. Name string ‘json: " nam e" xml:"na me"’
https://golang.org/pkg/sync/ Age int ‘json: " age " xml:"ag e"

}
Defer, Panic, and Recover

func main () {
Defer emp := Employee({
A defer statement pushes a function call onto a Last In First Out Name: " and an.h ",
order list. The list of saved calls is executed after the surrounding Age: 27,
function returns }

Panic // Marshal: refers to the process of converting

// the data or the objects into a byte-s tream

Panic is a built-in function that stops the ordinary flow of control

. L jso nData, := json.M ars hal (emp)

and begins panicking. -
fmt.Pr int 1ln(str ing (js onD ata))

Recover xml Data, _ := xml.Ma rsh al (emp)
Recover is a built-in function that regains control of a panicking fmt.Pr int 1n(str ing (xm lData))
goroutine // Unmarshal: refers to the reverse process of
func main () { // converting the byte-s tream back to data or
defer func() { object
if r := recover(); r != nil { jso n.U nma rsh al(jso nData, &emp)
fmt.Pr int In(" Rec ove red ", r) fmt.Pr int In(emp)
} }
O
pan ic("make panic")
}
encoding is a built-in package defines interfaces shared by other
packages that convert data to and from byte-level and textual repres-
entations
Go offers built-in support for encoding/gob, encoding/json, and
encoding/xml
https://golang.org/pkg/encoding/
By Andan H M (andanhm) Published 21st October, 2018. Sponsored by Readable.com
cheatography.com/andanhm/ Last updated 22nd October, 2018. Measure your website readability!

andanhm.me Page 7 of 8. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://golang.org/pkg/sync/
https://golang.org/pkg/encoding/
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

GoLang Cheat Sheet
by Andan H M (andanhm) via cheatography.com/69306/cs/17474/

Cheatography

Tool

https://godoc.org/golang.org/x/tools

https://dominik.honnef.co/posts/2014/12/an_incomplete_list_of _go_t-
ools/

https://github.com/campoy/go-tooling-workshop

By Andan H M (andanhm) Published 21st October, 2018. Sponsored by Readable.com
cheatography.com/andanhm/ Last updated 22nd October, 2018. Measure your website readability!
andanhm.me Page 8 of 8. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/andanhm/
http://www.cheatography.com/andanhm/cheat-sheets/golang
https://godoc.org/golang.org/x/tools
https://dominik.honnef.co/posts/2014/12/an_incomplete_list_of_go_tools/
https://github.com/campoy/go-tooling-workshop
http://www.cheatography.com/andanhm/
https://andanhm.me
https://readable.com

	GoLang Cheat Sheet - Page 1
	Go
	Companies Using Golang
	Feature
	Install
	Lack of essential features
	Directory layout

	GoLang Cheat Sheet - Page 2
	Hello Word
	Packages and Modules
	Running
	Variable & Function Declar­ations
	Package
	Built-in Types

	GoLang Cheat Sheet - Page 3
	If statement
	Loop statement

	GoLang Cheat Sheet - Page 4
	Switch statement
	Arrays, Slices
	Maps & Struct

	GoLang Cheat Sheet - Page 5
	Example
	Interfaces

	GoLang Cheat Sheet - Page 6
	Unit Test
	Error
	Concur­rency
	HTTP Handler
	Example

	GoLang Cheat Sheet - Page 7
	Example
	Defer, Panic, and Recover
	Encoding

	GoLang Cheat Sheet - Page 8
	Tool

