
SubScript Cheat Sheet
by anatoliykmetyuk via cheatography.com/25536/cs/6718/

Syntax

import subscript.language

import subscript.Predef._

Top-level imports required in all
SubScript sources.

script a = expr Script definition

script..

 a = expr

 b = expr

Shorthand script definition

runSc rip t(scr ipt _na me) Run scripts like this

[expr] Priori tizing Parent heses (like " ()" in "2
- (1 + 3)", just for scripts)

[** expr **] Launch Anchor

[* expr *] Launch

@a: b Annotation

@{pri ntl n(t here)}: a Also annota tion. There points to the
annotated expression node

var x: Int = 3 Variable declar ations are possible in
scripts

let scala _expr Executes scal a_e xpr as a tiny

code fragment.

Sequential Operators

a ; b Executes next operator as soon as current one has success

a b Same as above

a

b

Same as above

Parallel Operators

a && b Non- strict and-pa ral lel ism. Succeeds iff all its operands do.
On failure of one of the children terminates without success
immedi ately.

a & b Strict and-pa ral lel ism. Same as above, but if some of its
children doesn't have success, it waits for the rest of the
children to execute before termin ating.

a || b Non- strict or-par all eli sm . Succeeds iff at least one of its
children does. After a children succeeds, it terminates
immedi ately with success.

Parallel Operators (cont)

a | b Strict or-par all eli sm. Same as above, but waits for the rest of
the children after one succeeds. Has success immedi ately after
at least one child succeeds (termi nation and success are not
the same things).

Result Values

runScript(script_name).$ From Scala code, returns the result
value of scri pt_ name script, as

Try[A ny].

a^ From SubScript code, sets the result
of the parent script to that of a. E.g. in

script foo = a^ b c , script foo

will have a result of a. b and c are still

executed as usually.

a^^ The result of the parent script
becomes a Seq[A ny]. The result of

a is recorded into that Seq at the index

equal to a's current pass (that is, first

pass in a loop will go to index 0,
second - to 1 etc).

a^^i nt_ lit eral The result of the parent script
becomes a tuple. a's result is

recorded at int_ lit era l-th

position to the tuple. E.g. a^^1 b^^2

will result in a tuple with _1 set to a's

result and _2 - to b's result.

^lit eral Sets the result of the parent script to
lite ral. E.g. ̂ 5, ̂ " Foo ", ̂ 'x'.

^li ter al ^^ Sets the result to Seq[A ny], records

lite ral under its pass's index.

^li ter al ^ ^i nt_ lit eral Sets the result to a tuple, places this
lite ral under int_ lit era l-th

position in this tuple.

By anatoliykmetyuk

cheatography.com/anatoliykmetyuk/

Published 22nd January, 2016.
Last updated 24th January, 2016.
Page 1 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/anatoliykmetyuk/
http://www.cheatography.com/anatoliykmetyuk/cheat-sheets/subscript
http://www.cheatography.com/anatoliykmetyuk/
https://readability-score.com

SubScript Cheat Sheet
by anatoliykmetyuk via cheatography.com/25536/cs/6718/

Scala Code Blocks

{! scala block !} Normal code block. Activa tion, Execution,
Deacti vation.

{: scala block :} Tiny code block. Execution on Activa tion.

{. scala block .} Even t-h and ling code block. Does not execute
automa tic ally, need manual execution.

{* scala block *} Thre aded code block. Executes from a new
thread (all the other blocks execute from Script
Executor's thread).

Special Operands

[+] Epsi lon, or empty action. Has success immedi ately after
activa tion.

[-] Dela ta, or deadlock. Terminates without success immedi ately
after activa tion.

... Loop. When used as an operand to a sequence, loops the
sequence. E.g. a b ... executes in order "a b a b a b" etc as

an infinite loop. a ... b and ... a b have same effect.

break Break. Breaks activation of its parent operator.

break? Optional break. Behaves like break, but resumes activation

after an action happened in an operand activated before itself.

..? Optional break loop. Mixes together break? and

Altern ative Operators

a + b Choi ce. Starts with a and b activated. When either starts

executing, excludes another.

a / b Disr upt ion. Executes a until b starts, then excludes

(termi nates) a and continues with b. If a gets terminated without

b ever getting started, excludes b.

Condit ional Operators

if scala_expr then expr else expr Executes then part if

scala _expr is true,

otherwise - else part.

do expr then expr else expr Executes do part first. If it

has success, executes
then part, otherwise -

else part.

Dataflow

a ~~(x: T)~~> b Data flow. Executes a, casts its result

to type T, assigns it to x and executes

b with x in scope.

a ~~(x: T)~~> b

+~/~(x: E)~~> c

Dataflow with an extra clause to
handle except ions. If a succeeds, the

behaviour is as in the case above.
Otherwise, an exception with which a

failed is casted to E (which must be

<: Throwa ble) and handled by c.

Like catch in try-c atch.

a ~~(x: T)~~> b

+~~(y: A)~~> c

+~~(z: B)~~> d

Dataflow can arbitrary number of
result -ha ndling clauses and
except ion -ha ndling clauses.

a ~~(x: T)~~^ scala_expr

+~~(x: A)~~^ scala_expr

Dataflow map. Similar to Dataflow,
but runs the result of a through a

given scal a_e xpr and sets the

result of it as the result of the parent
script.

a ~~^ f Shorthand for a ~~(x: T)~~^

f(x).

By anatoliykmetyuk

cheatography.com/anatoliykmetyuk/

Published 22nd January, 2016.
Last updated 24th January, 2016.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/anatoliykmetyuk/
http://www.cheatography.com/anatoliykmetyuk/cheat-sheets/subscript
http://www.cheatography.com/anatoliykmetyuk/
https://readability-score.com

	SubScript Cheat Sheet - Page 1
	Syntax
	Result Values
	Sequential Operators
	Parallel Operators

	SubScript Cheat Sheet - Page 2
	Scala Code Blocks
	Dataflow
	Special Operands
	Alternative Operators
	Conditional Operators

