Cheatography

Biology A level - Ecosystems Cheat Sheet by Anais (Anais_Pe) via cheatography.com/151793/cs/43679/

Key words for topic	
Habitat	Ecological / environmental area inhabited by particular species.
Population	Group of organisms of same species in area.
Community	Eco. unit composed of different populations.
Niche	Role of an organism in an ecosystem (competition occurs when 2 organisms share a niche).
All affected h	w hintic + abintic factors

All affected by biotic + abiotic factors.

Biomass transfer	
Efficiency at producer level	Photosynthesis ≠ 100% of sunlight.
	Net production = gross prod respiratory losses
Efficiency at consumer level	Not all energy consumed (not all eaten or digested, metabolic heat).
	Ecological efficiency = (energy or biomass available after

transfer / energy or biomass available before transfer) x 100

Decomposition

Detrit-	Feed on detritus (dead organic
ivors	material).
Saprot-	Secrete enzymes in dead
rophs	material to digest it.

Recycling nitrogen

Nitrogen necessary for bio molecules, e.g. nucleic acids, amino acids...

Nitrogen fixation - Nitrogen cannot be used 'raw', so needs to be bonded with other molecules (by Rhizobium and Azotobacter).

Nitrification - Ammonium compounds converted into nitrogen-containing

compounds.

Requires oxygen.

Carried out by Nitrosomonas and Nitrobacter.

Denitrification - No oxygen --> denitrifying bacteria convert nitrates into N gas.

Ammonification - Nitrogen into ammonium compounds.

Carbon cycle

Succession key terms

Succession	Type of living organisms changes over time (in plants, from annual plants to hardwood trees). Communities become increa- singly complex, biodiversity increases.
	<i>Primary succession</i> - Plants colonise barren land for the first time.
	Secondary succession - Soil already present, plants grow for first time.
Seral stages / seres	Step in succession.
Defected succession	Succession halted before climax community. If caused by human activity, then = plagioclimax.

By Anais (Anais_Pe)

cheatography.com/anais-pe/

Published 18th June, 2024. Last updated 18th June, 2024. Page 1 of 2.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Biology A level - Ecosystems Cheat Sheet by Anais (Anais_Pe) via cheatography.com/151793/cs/43679/

Plant succesion

Pioneer community	Seeds, spores carried by wind, excrement Produce many seeds, germinates quickly, fix N ₂ from atmosphere.
Interm- ediate community	Erosion and decomp. of pioneer species form humus. Can support new species (secondary colonisers). Tertiary colonisers - When conditions improve. Live with little water.
Climax community	Stable, little change over time.

Distribution v. Abundance

Distribution	Where organisms are found in an ecosystem.
	Line or belt transect normally used.
Abundance	Number of individuals of a species found in an area.
	Animals - Capture-recapture. Plants - Individuals per area.

\mathbf{C}

By Anais (Anais_Pe) cheatography.com/anais-pe/ Published 18th June, 2024. Last updated 18th June, 2024. Page 2 of 2. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Simpson's index of diversity

$D = 1 - \sum (n/N)^2$
D = diversity index
N = total number of organisms in
ecosystem
n = number of individuals in each species
Value between 0-1. Higher value = higher biodiversity.