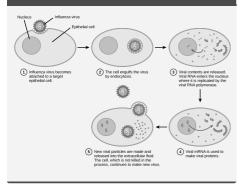
Biology A level - Communicable Diseases Cheat Sheet by Anais (Anais_Pe) via cheatography.com/151793/cs/43598/

Types of p	athogens
Bacteria	Prokaryotes. Classified by shape and cell walls (gram positive / negative bacteria). Gram positive bacteria (e.g. MRSA) look purple after staining, gram negative (e.g. E.coli) looks red.
Viruses	Non-living infectious agents. Rapidly reproduce. Pathogenic, attack other organisms (bacte- riophages attack bacteria).
Protoc- tista (protista)	Eukaryotic organism
Fungi	

Viral infection


1. Attachment of virus.

2. Virus implants DNA (viral nucleic acid) in host cell.

- 3. Cell replicates viral nucleic acid.
- 4. Synthesis of viral proteins.
- 5. Assembly of virus particles.

6. Virus leaves cell. Lysis of host cell.

Viral infection diagram

By **Anais** (Anais_Pe) cheatography.com/anais-pe/

Transmission of animal pathogens

<i>Physical</i> <i>contact</i> e.g. HIV, bacterial meningitis	Direct contact, increased risk if overcrowding, poor hygiene
<i>Droplet</i> <i>infection</i> e.g. influenza, TB	Indirect contact, increased risk if overcrowding, poor ventilation
<i>Vectors</i> e.g. malaria, bubonic plague, rabies	Indirect contact, increased risk if poor waste disposal (breeding ground for vectors), climate change
<i>Fomites</i> e.g. athlete's foot, gas gangrene	Infected surfaces, indirect contact, increased risk if living in unclean conditions
<i>Digestion</i> e.g. cholera, food poisoning	Dlirect contact, increased risk if sewage water, poor diet / nutrition
<i>Innocu- lation</i> e.g. malaria, rabies	Direct contact, increased risk if sharing needles

Animal diseases		
Disease	Type of pathogen	Symptoms
Bacterial meningitis	Gram neg. bacterium	Fever, drowsi- ness, light sensit- ivity, vomiting

Published 10th June, 2024. Last updated 10th June, 2024. Page 1 of 4.

Animal diseases (cont)

/ unimum dioo		
Tuberc- ulosis (TB)	Gram pos. bacterium	Weight loss, fever, chest pain, coughing
HIV / AIDS	Virus	Fever, sore throat, rash, muscle pain
Influenza	Virus	Fever, headache, dry cough, cold symptoms
Athlete's foot	Fungus	Itchy red rash between toes, flaky dry skin.
Ringworm	Fungus	Silvery ring-like rash.
Malaria	Protist	Fever, sweats, vomiting, diarrh- oea

Plant diseases		
Disease	Type of pathogen	Symptoms
Black sigatoka (bananas)	Fungus	Premature ripening, brown + shriveled leaves.
Tobacco Mosaic Virus (TMV) (tomatoes, cucumbers)	Virus	Stunting, leaf curling, yellowing plant
<i>Ring rot</i> (potatoes, tomatoes)	Gram pos. bacterium	Vascular wilt, discol- ouration and loss of texture

Biology A level - Communicable Diseases Cheat Sheet by Anais (Anais_Pe) via cheatography.com/151793/cs/43598/

Plant diseases (cont)		
Potato /	Protist	Shrivel + turn brown,
tomato		fine white fungal
blight		growth around
		lesions

Recognising attack on plants

Molecules from pathogen / products from pathogenic enzymes recognised by cell by receptors in membrane.

Signalling molecules alert nucleus to attack.

Defensive molecules directly attack

AND / OR defensive chemicals alert other cells through plasmodesmata

AND / OR strengthen cell walls with callose and lignin

Callose - polysaccharide (beta 1,3 and beta 1,6 glycosidic bonds).

- can block plasmodesmata

- can thicken infected cell walls

- seals sieve plates in phloem to isolate cell

Chemical defenses in plants

Insect repellent	e.g. pine resin, citronella
Antiba- cterial compound	e.g. phenols (antiseptics), antibacterial gossypol (in cotton), defensins (plant protein which disrupts bacterial / fungal mambranes)
Antifungal compounds	e.g. chitinase, saponins, antifungal gossypol, phenols

By **Anais** (Anais_Pe) cheatography.com/anais-pe/

Chemical defenses in plants (cont)

Anti-o- omy- cetes	e.g. glucanases (enzyme which breaks down glucans)
General toxins	e.g. chemicals broken down into cyanide
Insect- icides	e.g. caffeine, pyrethrins (in chrysanthemums, act as insect neurotoxins)

Physical defenses in plants		
Physical	Waxy cuticle, cell wall	
defenses		
Callose	Block sieve plates, thicken	
	walls	

Non-specific animal defences

Keeping the pathogens out

Skin	Physical barrier, healthy microorganisms to outcompete pathogens, sebum secretion.
Mucous membranes	Contains phagocytes.
<i>Tears / urine / acid in stomach</i>	Contain lysozymes.
Coughing / sneezing	Ejects pathogen-containing mucus.
<i>Vomiting /</i> diarrhoea	Expel pathogen-containing gut contents.
Inflam- matory response	Localised response to pathogen characterised by pain / heat / redness / swelling (separate block).

Published 10th June, 2024. Last updated 10th June, 2024. Page 2 of 4.

Non-specific animal defences (cont)		
Blood clott	ing	Cascade reaction
		(seaprate block).
Destroying	pathoge	ens
Fevers		Cytokines stimulate
		hypothalamus to
		increase temperature.
Cytokines		Cell-signalling
		molecules.
Opsonins e	e.g.	Bind to + tag path.
immunoglo	bin G	Phagocytes = opsonin-
and M (IgG / IgM)		binding receptors.
Phagocytosis		Phagocytes = neutro-
		phils and macrop-
		hages (separate
		block).
	_	
Inflammatory response and blood clotting		
Inflam-	Mast co	ells released, release
matory	histami	nes and cytokines.
response	Histam	ines> make blood
	vessels	dilate (heat and

лy	mistammes and cytokines.
onse	Histamines> make blood
	vessels dilate (heat and
	redness) + blood vessels walls
	become more leaky> blood
	plasma is forced out and
	becomes tissue fluid (swelling
	and pain). Cytokines> attract
	phagocytes.

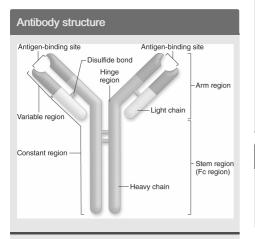
Biology A level - Communicable Diseases Cheat Sheet by Anais (Anais_Pe) via cheatography.com/151793/cs/43598/

Inflammatory response and blood clotting (cont)

Blood Damaged tissue --> acivates clotting platelets --> thromboplastin released. Thromboplastin + Ca²⁺ = prothrombin --> thrombin --> catalyses fibrinogen --> fibrin --> blood clot

Phagocytosis

Phagocytes attracted by chemicals produced by path.


Phagocyte recognises path. as non-self.

Phagocyte engulfs path. --> phagosome.

Lysozymes combines with phagosome --> phagolysosome.

Digested path. absorbed, antigen combines with MHC to form MHC complex.

Phagocyte + MHC complex = antigen-presenting cell (APC).

Variable region - Changes in every antibody and is complementary to antigen.
Agglutination - Antigens bind to multiple pathogens to clump them together.
Neutralisation - Stop pathogens entering host cell OR act as antitoxins.

Cell mediated immunity - specific response

T lymphocytes respond to changed cells.

An APC is formed (phagocytosis by

macrophages). T helpers bind to presented antigens.

T helper carrying the correct antibody is activated and divides by mitosis (**clonal expansion**).

T cells can then take one of four paths:

- Develop into T memory cells
- Produce **interleukins** to trigger phagocytosis

- Produce interleukins to trigger B cell division

- Develop into T killer cells

T helper cell - Produce interleukins, stimulate B cells and antibody production and attract other T cells and antibodies. *T killer cell* - Kill pathogen - produce perforin which make holes in pathogen membrane.

T memory cell - Immunological memory, remain in blood for a long time. Second infection = rapid division of T killer cells. *T regulator cells* - Prevent autoimmune response, repress immune system after pathogen has been destroyed.

Humoral immunity - specific response

Activated **T helper cells** bind to **B lympho**cytes presenting the correct antigen (clonal selection) and activates it with interleukins.

B cells can then become one of two things:

- Become a B plasma cell.
- Become a B memory cell.

B lymphocytes / cells - APCs, respond to antigens and APCs.

PRIMARY IMMUNE RESPONSE:

B plasma cells - Produce antibodies, act as opsonins (label cells) or as agglutinins. **SECONDARY IMMUNE RESPONSE:** *B memory cells* - Stay in the blood. If infected again, will divide into plasma cells.

Published 10th June, 2024. Last updated 10th June, 2024. Page 3 of 4.

Autoimmune disease

Autoiminune uiseases		
Diseases	Part affected	Treatment
Rheumatoid arthritis	Joints	No cure, anti- inflam. drugs and steroids
Lupus	Skin, joints and organs	No cure, anti- inflam. drugs, steroids
Type 1 diabetes	Insulin-s- ecreting parts of pancreas	Insulin inject- ions, pancreas transplant

Natural v. artificial, active v. passive immunity

Natural active	Secondary immune response (memory T and B cells).
Natural passive	Antibodies cross from placenta / mothers' milk.
Artificial active	Body simulated to make own antibodies (e.g. injection of weakened / dead path., isolated antigens)
Artificial passive	Antibodies made in other animal, collected and injected.

Drug design of the future

Pharmo- genetics	Personalised meds, genotype and drugs interact.
Synthetic	Develop bacteria to produce
biology	otherwise rare drugs, GM
	mammals and nanotech.

Antibiotic dilemma

Antibiotics = selective toxins, harm bacteria but not human cells. Random mutation in bacteria could lead to antibiotic resistance --> whole population / species develops with trait (bacteria reproduce rapidly therefore antibiotic-resi-

stant generation arrives quickly).

Specific example - MRSA

Research - computer models, deep sea microorganisms...

Bacterial resistance building faster than antibiotics are developed.

By **Anais** (Anais_Pe) cheatography.com/anais-pe/ Published 10th June, 2024. Last updated 10th June, 2024. Page 4 of 4.