\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{amstoffel (amstoffel)} \pdfinfo{ /Title (a-level-physics-particles-and-radiation.pdf) /Creator (Cheatography) /Author (amstoffel (amstoffel)) /Subject (A-Level Physics - Particles and Radiation Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3AAD9} \definecolor{LightBackground}{HTML}{F3F4FA} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{A-Level Physics - Particles and Radiation Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{amstoffel (amstoffel)} via \textcolor{DarkBackground}{\uline{cheatography.com/197528/cs/41673/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}amstoffel (amstoffel) \\ \uline{cheatography.com/amstoffel} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 7th May, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Constituents of an Atom}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An atom is formed from 3 constituents: protons, neutrons and electrons.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Protons and neutrons (called neutrons) are found in the nucleus at the centre} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Electrons orbit around the nucleus in shells/energy levels.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The diameter of the nucleus is about 1 femtometre (10\textasciicircum{}-15\textasciicircum{} m)} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The diamerer of an atom is roughly 100,000 times larger, or 10\textasciicircum{}-10\textasciicircum{} m} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Specific charge is the charge-mass ratio, calculated by dividing a particle's charge by its mass} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Specific charge (C kg\textasciicircum{}-1\textasciicircum{}) = charge of particle/mass of particle} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.87717 cm} x{1.12779 cm} x{1.08602 cm} x{1.08602 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Particle Properties}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Particle} & \{\{ac\}\}Proton & \{\{ac\}\}Neutron & \{\{ac\}\}Electron \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Charge (C) & \{\{ac\}\}+1.6×10\textasciicircum{}-19\textasciicircum{} & \{\{ac\}\}0 & \{\{ac\}\}-1.6×10\textasciicircum{}-19\textasciicircum{} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \seqsplit{Relative} Charge & \{\{ac\}\}+1 & \{\{ac\}\}0 & \{\{ac\}\}-1 \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Mass (kg) & \{\{ac\}\}1.67×10\textasciicircum{}-27\textasciicircum{} & \{\{ac\}\}1.67×10\textasciicircum{}-27\textasciicircum{} & \{\{ac\}\}9.11×10\textasciicircum{}-31\textasciicircum{} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \seqsplit{Relative} Mass & \{\{ac\}\}1 & \{\{ac\}\}1 & \{\{ac\}\}0.0005 \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \seqsplit{Specific} Charge & \{\{ac\}\}9.58×10\textasciicircum{}7\textasciicircum{} & \{\{ac\}\}0 & \{\{ac\}\}1.76×10\textasciicircum{}11\textasciicircum{} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atom Notation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1709203147_atom notation.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Isotopes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Atoms of the same element always have the same number of protons, and therefore the same atomic number} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{However, they can have different amounts of neutrons, which are called isotopes} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{We can use isotopes for carbon-dating, a method of estimating the age of living organisms like fossils} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Organisms are made of carbon, which has a radioactive isotope (carbon-14) and decays at a known half-life once the organism is dead} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Therefore we can use the amount of carbon-14 left to determine how old it is by how much carbon remains} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Stable and unstable nuclei}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The nucleus is held together by the strong nuclear force (one of 4 fundamental forces)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{It provides an attractive force between nucleons with a range of about 3 femtometres ( 3x10\textasciicircum{}-15\textasciicircum{} m)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This overcomes the repulsive electrostatic force exerted by positively charged protons on each other} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{At distances less than about 0.5 fm the strong nuclear force is repulsive and prevents the nucleus collapsing into a point} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Variation of strong nuclear force with distance}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1709204430_strong nuclear force graph.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alpha and beta decay}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Unstable nuclei have too many protons/neutrons/both, where the SNF is not enough to keep them stable} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{They will often decay via α (alpha) or β- (beta minus) emission in order to become stable, where the type of decay is dependent on the number of each nucleon} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Alpha decay occurs in large nuclei with too many of both nucleons.\{\{nl\}\}Beta-minus decay occurs in neutron-rich nuclei.\{\{nl\}\}Beta-plus decay occurs in neutron-deficient nuclei.} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The existence of the neutron was hypothesised in the conversation of energy law in the beta decay equation} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alpha decay equation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714465102_alpha decay.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Beta- decay equation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714465313_beta- decay.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Beta+ decay equaion}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714465416_beta+ decay.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Particles and antiparticles}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{For every type of particle, there is a corresponding antiparticle} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Examples of these include:\{\{nl\}\}electron and positron\{\{nl\}\}proton and anitproton\{\{nl\}\}neutron and antineutron\{\{nl\}\}neutrino and antineutrino} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Comparison of particles/antiparticles}} \tn % Row 0 \SetRowColor{LightBackground} Electron (e\textasciicircum{}-)\{\{nl\}\} mass=9.11×10\textasciicircum{}-31\textasciicircum{} kg\{\{nl\}\}rest energy=0.51MeV\{\{nl\}\}relative charge=-1 & Positron (e\textasciicircum{}+)\{\{nl\}\}mass=9.11×10\textasciicircum{}-31\textasciicircum{} kg\{\{nl\}\}rest energy=0.51MeV\{\{nl\}\}relative charge=+1 \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Neutron\{\{nl\}\}mass=1.67x10\textasciicircum{}-27\textasciicircum{}\{\{nl\}\} rest energy=940MeV\{\{nl\}\}relative charge=0 & Antineutron\{\{nl\}\}mass=1.67x10\textasciicircum{}-27\textasciicircum{}\{\{nl\}\} rest energy=940MeV\{\{nl\}\}relative charge=0 \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} Neutrino\{\{nl\}\}mass=0\{\{nl\}\}relative charge=0 & Antineutrino\{\{nl\}\}mass=0\{\{nl\}\}relative charge=0 \tn % Row Count 13 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{In short, particles and their corresponding antiparticles will have the same mass and rest energy, but different relative charges} \tn % Row Count 16 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The antineutron and antineutrino symbols are the same as the particle ones but with a line above them} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Photon model of Electromagnetic (EM) Radiation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{EM Radiation, or light, travels as small packets of energy known as photons} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Photons transfer energy but have no mass themselves} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Since EM waves travel at the speed of light and follow Planck's constant, we can use the following equation:\{\{nl\}\}Energy of a photon = (Planck's Constant x Speed)/Wavelength} \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Particle/Antiparticle interactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Pair production is where a photon is converted into an equal amount of matter and antimatter\{\{nl\}\}This only happens when the photon has a energy greater than the total rest energy of both particles, and any excess energy is converted into kinetic energy of the particles.} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Annihilation is where a particle and its corresponding antiparticle collide, resulting in both of their masses being converted into energy (in the form of 2 photons moving in opposite directions as to conserve momentum).} \tn % Row Count 11 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pair Production diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714637737_pair production.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Annihilation diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714637798_annihilation.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fundamental Interactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{There are 4 main fundamental forces: strong nuclear, weak nuclear, electromagnetic and gravity.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Forces between particles are caused by exchange particles, which carry energy and momentum between the particles experiencing the force.\{\{nl\}\}Each fundamental force has its own exchange particles.} \tn % Row Count 6 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.91894 cm} x{1.29487 cm} p{0.79363 cm} x{1.16956 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Particle Interactions}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Interaction}} & {\bf{Exchange Particle}} & {\bf{Range (m)}} & {\bf{Acts on}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Strong & Gluon/Pions & 3x10\textasciicircum{}-15\textasciicircum{} & Hadrons \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Weak & W boson (both +/-) & 10\textasciicircum{}-18\textasciicircum{} & All particles \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \seqsplit{Electromagnetic} & Virtual photon (λ) & \seqsplit{Infinite} & Charged particles \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} Gravity & Graviton (not on spec) & \seqsplit{Infinite} & Particles with mass \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Feynman Diagrams}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}