\documentclass[10pt,a4paper]{article}

% Packages
\usepackage{fancyhdr}           % For header and footer
\usepackage{multicol}           % Allows multicols in tables
\usepackage{tabularx}           % Intelligent column widths
\usepackage{tabulary}           % Used in header and footer
\usepackage{hhline}             % Border under tables
\usepackage{graphicx}           % For images
\usepackage{xcolor}             % For hex colours
%\usepackage[utf8x]{inputenc}    % For unicode character support
\usepackage[T1]{fontenc}        % Without this we get weird character replacements
\usepackage{colortbl}           % For coloured tables
\usepackage{setspace}           % For line height
\usepackage{lastpage}           % Needed for total page number
\usepackage{seqsplit}           % Splits long words.
%\usepackage{opensans}          % Can't make this work so far. Shame. Would be lovely.
\usepackage[normalem]{ulem}     % For underlining links
% Most of the following are not required for the majority
% of cheat sheets but are needed for some symbol support.
\usepackage{amsmath}            % Symbols
\usepackage{MnSymbol}           % Symbols
\usepackage{wasysym}            % Symbols
%\usepackage[english,german,french,spanish,italian]{babel}              % Languages

% Document Info
\author{amstoffel (amstoffel)}
\pdfinfo{
  /Title (a-level-physics-particles-and-radiation.pdf)
  /Creator (Cheatography)
  /Author (amstoffel (amstoffel))
  /Subject (A-Level Physics - Particles and Radiation Cheat Sheet)
}

% Lengths and widths
\addtolength{\textwidth}{6cm}
\addtolength{\textheight}{-1cm}
\addtolength{\hoffset}{-3cm}
\addtolength{\voffset}{-2cm}
\setlength{\tabcolsep}{0.2cm} % Space between columns
\setlength{\headsep}{-12pt} % Reduce space between header and content
\setlength{\headheight}{85pt} % If less, LaTeX automatically increases it
\renewcommand{\footrulewidth}{0pt} % Remove footer line
\renewcommand{\headrulewidth}{0pt} % Remove header line
\renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit
% This two commands together give roughly
% the right line height in the tables
\renewcommand{\arraystretch}{1.3}
\onehalfspacing

% Commands
\newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour
\newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols
\newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns
\newcommand{\tn}{\tabularnewline} % Required as custom column type in use

% Font and Colours
\definecolor{HeadBackground}{HTML}{333333}
\definecolor{FootBackground}{HTML}{666666}
\definecolor{TextColor}{HTML}{333333}
\definecolor{DarkBackground}{HTML}{A3AAD9}
\definecolor{LightBackground}{HTML}{F3F4FA}
\renewcommand{\familydefault}{\sfdefault}
\color{TextColor}

% Header and Footer
\pagestyle{fancy}
\fancyhead{} % Set header to blank
\fancyfoot{} % Set footer to blank
\fancyhead[L]{
\noindent
\begin{multicols}{3}
\begin{tabulary}{5.8cm}{C}
    \SetRowColor{DarkBackground}
    \vspace{-7pt}
    {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent
        \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}}
    }
\end{tabulary}
\columnbreak
\begin{tabulary}{11cm}{L}
    \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{A-Level Physics - Particles and Radiation Cheat Sheet}}}} \\
    \normalsize{by \textcolor{DarkBackground}{amstoffel (amstoffel)} via \textcolor{DarkBackground}{\uline{cheatography.com/197528/cs/41673/}}}
\end{tabulary}
\end{multicols}}

\fancyfoot[L]{ \footnotesize
\noindent
\begin{multicols}{3}
\begin{tabulary}{5.8cm}{LL}
  \SetRowColor{FootBackground}
  \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}}  \\
  \vspace{-2pt}amstoffel (amstoffel) \\
  \uline{cheatography.com/amstoffel} \\
  \end{tabulary}
\vfill
\columnbreak
\begin{tabulary}{5.8cm}{L}
  \SetRowColor{FootBackground}
  \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}}  \\
   \vspace{-2pt}Not Yet Published.\\
   Updated 7th May, 2024.\\
   Page {\thepage} of \pageref{LastPage}.
\end{tabulary}
\vfill
\columnbreak
\begin{tabulary}{5.8cm}{L}
  \SetRowColor{FootBackground}
  \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}}  \\
  \SetRowColor{white}
  \vspace{-5pt}
  %\includegraphics[width=48px,height=48px]{dave.jpeg}
  Measure your website readability!\\
  www.readability-score.com
\end{tabulary}
\end{multicols}}




\begin{document}
\raggedright
\raggedcolumns

% Set font size to small. Switch to any value
% from this page to resize cheat sheet text:
% www.emerson.emory.edu/services/latex/latex_169.html
\footnotesize % Small font.

\begin{multicols*}{3}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Constituents of an Atom}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{An atom is formed from 3 constituents: protons, neutrons and electrons.} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{Protons and neutrons (called neutrons) are found in the nucleus at the centre} \tn 
% Row Count 4 (+ 2)
% Row 2
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Electrons orbit around the nucleus in shells/energy levels.} \tn 
% Row Count 6 (+ 2)
% Row 3
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{The diameter of the nucleus is about 1 femtometre (10\textasciicircum{}-15\textasciicircum{} m)} \tn 
% Row Count 8 (+ 2)
% Row 4
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{The diamerer of an atom is roughly 100,000 times larger, or 10\textasciicircum{}-10\textasciicircum{} m} \tn 
% Row Count 10 (+ 2)
% Row 5
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{Specific charge is the charge-mass ratio, calculated by dividing a particle's charge by its mass} \tn 
% Row Count 12 (+ 2)
% Row 6
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Specific charge (C kg\textasciicircum{}-1\textasciicircum{}) = charge of particle/mass of particle} \tn 
% Row Count 14 (+ 2)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{x{0.87717 cm} x{1.12779 cm} x{1.08602 cm} x{1.08602 cm} }
\SetRowColor{DarkBackground}
\mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Particle Properties}}  \tn
% Row 0
\SetRowColor{LightBackground}
\seqsplit{Particle} & \{\{ac\}\}Proton & \{\{ac\}\}Neutron & \{\{ac\}\}Electron \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
Charge (C) & \{\{ac\}\}+1.6×10\textasciicircum{}-19\textasciicircum{} & \{\{ac\}\}0 & \{\{ac\}\}-1.6×10\textasciicircum{}-19\textasciicircum{} \tn 
% Row Count 4 (+ 2)
% Row 2
\SetRowColor{LightBackground}
\seqsplit{Relative} Charge & \{\{ac\}\}+1 & \{\{ac\}\}0 & \{\{ac\}\}-1 \tn 
% Row Count 6 (+ 2)
% Row 3
\SetRowColor{white}
Mass (kg) & \{\{ac\}\}1.67×10\textasciicircum{}-27\textasciicircum{} & \{\{ac\}\}1.67×10\textasciicircum{}-27\textasciicircum{} & \{\{ac\}\}9.11×10\textasciicircum{}-31\textasciicircum{} \tn 
% Row Count 8 (+ 2)
% Row 4
\SetRowColor{LightBackground}
\seqsplit{Relative} Mass & \{\{ac\}\}1 & \{\{ac\}\}1 & \{\{ac\}\}0.0005 \tn 
% Row Count 10 (+ 2)
% Row 5
\SetRowColor{white}
\seqsplit{Specific} Charge & \{\{ac\}\}9.58×10\textasciicircum{}7\textasciicircum{} & \{\{ac\}\}0 & \{\{ac\}\}1.76×10\textasciicircum{}11\textasciicircum{} \tn 
% Row Count 12 (+ 2)
\hhline{>{\arrayrulecolor{DarkBackground}}----}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atom Notation}}  \tn
\SetRowColor{LightBackground}
\mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1709203147_atom notation.png}}} \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Isotopes}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Atoms of the same element always have the same number of protons, and therefore the same atomic number} \tn 
% Row Count 3 (+ 3)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{However, they can have different amounts of neutrons, which are called isotopes} \tn 
% Row Count 5 (+ 2)
% Row 2
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{We can use isotopes for carbon-dating, a method of estimating the age of living organisms like fossils} \tn 
% Row Count 8 (+ 3)
% Row 3
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{Organisms are made of carbon, which has a radioactive isotope (carbon-14) and decays at a known half-life once the organism is dead} \tn 
% Row Count 11 (+ 3)
% Row 4
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Therefore we can use the amount of carbon-14 left to determine how old it is by how much carbon remains} \tn 
% Row Count 14 (+ 3)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Stable and unstable nuclei}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{The nucleus is held together by the strong nuclear force (one of 4 fundamental forces)} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{It provides an attractive force between nucleons with a range of about 3 femtometres ( 3x10\textasciicircum{}-15\textasciicircum{} m)} \tn 
% Row Count 4 (+ 2)
% Row 2
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{This overcomes the repulsive electrostatic force exerted by positively charged protons on each other} \tn 
% Row Count 6 (+ 2)
% Row 3
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{At distances less than about 0.5 fm the strong nuclear force is repulsive and prevents the nucleus collapsing into a point} \tn 
% Row Count 9 (+ 3)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Variation of strong nuclear force with distance}}  \tn
\SetRowColor{LightBackground}
\mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1709204430_strong nuclear force graph.png}}} \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alpha and beta decay}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Unstable nuclei have too many protons/neutrons/both, where the SNF is not enough to keep them stable} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{They will often decay via α (alpha) or β- (beta minus) emission in order to become stable, where the type of decay is dependent on the number of each nucleon} \tn 
% Row Count 6 (+ 4)
% Row 2
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Alpha decay occurs in large nuclei with too many of both nucleons.\{\{nl\}\}Beta-minus decay occurs in neutron-rich nuclei.\{\{nl\}\}Beta-plus decay occurs in neutron-deficient nuclei.} \tn 
% Row Count 10 (+ 4)
% Row 3
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{The existence of the neutron was hypothesised in the conversation of energy law in the beta decay equation} \tn 
% Row Count 13 (+ 3)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alpha decay equation}}  \tn
\SetRowColor{LightBackground}
\mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714465102_alpha decay.png}}} \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Beta- decay equation}}  \tn
\SetRowColor{LightBackground}
\mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714465313_beta- decay.png}}} \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Beta+ decay equaion}}  \tn
\SetRowColor{LightBackground}
\mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714465416_beta+ decay.png}}} \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Particles and antiparticles}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{For every type of particle, there is a corresponding antiparticle} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{Examples of these include:\{\{nl\}\}electron and positron\{\{nl\}\}proton and anitproton\{\{nl\}\}neutron and antineutron\{\{nl\}\}neutrino and antineutrino} \tn 
% Row Count 5 (+ 3)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} }
\SetRowColor{DarkBackground}
\mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Comparison of particles/antiparticles}}  \tn
% Row 0
\SetRowColor{LightBackground}
Electron (e\textasciicircum{}-)\{\{nl\}\} mass=9.11×10\textasciicircum{}-31\textasciicircum{} kg\{\{nl\}\}rest energy=0.51MeV\{\{nl\}\}relative charge=-1 & Positron (e\textasciicircum{}+)\{\{nl\}\}mass=9.11×10\textasciicircum{}-31\textasciicircum{} kg\{\{nl\}\}rest energy=0.51MeV\{\{nl\}\}relative charge=+1 \tn 
% Row Count 5 (+ 5)
% Row 1
\SetRowColor{white}
Neutron\{\{nl\}\}mass=1.67x10\textasciicircum{}-27\textasciicircum{}\{\{nl\}\} rest energy=940MeV\{\{nl\}\}relative charge=0 & Antineutron\{\{nl\}\}mass=1.67x10\textasciicircum{}-27\textasciicircum{}\{\{nl\}\} rest energy=940MeV\{\{nl\}\}relative charge=0 \tn 
% Row Count 10 (+ 5)
% Row 2
\SetRowColor{LightBackground}
Neutrino\{\{nl\}\}mass=0\{\{nl\}\}relative charge=0 & Antineutrino\{\{nl\}\}mass=0\{\{nl\}\}relative charge=0 \tn 
% Row Count 13 (+ 3)
% Row 3
\SetRowColor{white}
\mymulticolumn{2}{x{5.377cm}}{In short, particles and their corresponding antiparticles will have the same mass and rest energy, but different relative charges} \tn 
% Row Count 16 (+ 3)
\hhline{>{\arrayrulecolor{DarkBackground}}--}
\SetRowColor{LightBackground}
\mymulticolumn{2}{x{5.377cm}}{The antineutron and antineutrino symbols are the same as the particle ones but with a line above them}  \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}--}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Photon model of Electromagnetic (EM) Radiation}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{EM Radiation, or light, travels as small packets of energy known as photons} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{Photons transfer energy but have no mass themselves} \tn 
% Row Count 4 (+ 2)
% Row 2
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Since EM waves travel at the speed of light and follow Planck's constant, we can use the following equation:\{\{nl\}\}Energy of a photon = (Planck's Constant x Speed)/Wavelength} \tn 
% Row Count 8 (+ 4)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Particle/Antiparticle interactions}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{Pair production is where a photon is converted into an equal amount of matter and antimatter\{\{nl\}\}This only happens when the photon has a energy greater than the total rest energy of both particles, and any excess energy is converted into kinetic energy of the particles.} \tn 
% Row Count 6 (+ 6)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{Annihilation is where a particle and its corresponding antiparticle collide, resulting in both of their masses being converted into energy (in the form of 2 photons moving in opposite directions as to conserve momentum).} \tn 
% Row Count 11 (+ 5)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pair Production diagram}}  \tn
\SetRowColor{LightBackground}
\mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714637737_pair production.png}}} \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Annihilation diagram}}  \tn
\SetRowColor{LightBackground}
\mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/amstoffel_1714637798_annihilation.png}}} \tn 
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fundamental Interactions}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{There are 4 main fundamental forces: strong nuclear, weak nuclear, electromagnetic and gravity.} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
\mymulticolumn{1}{x{5.377cm}}{Forces between particles are caused by exchange particles, which carry energy and momentum between the particles experiencing the force.\{\{nl\}\}Each fundamental force has its own exchange particles.} \tn 
% Row Count 6 (+ 4)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{x{0.91894 cm} x{1.29487 cm} p{0.79363 cm} x{1.16956 cm} }
\SetRowColor{DarkBackground}
\mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Particle Interactions}}  \tn
% Row 0
\SetRowColor{LightBackground}
{\bf{Interaction}} & {\bf{Exchange Particle}} & {\bf{Range (m)}} & {\bf{Acts on}} \tn 
% Row Count 2 (+ 2)
% Row 1
\SetRowColor{white}
Strong & Gluon/Pions & 3x10\textasciicircum{}-15\textasciicircum{} & Hadrons \tn 
% Row Count 4 (+ 2)
% Row 2
\SetRowColor{LightBackground}
Weak & W boson (both +/-) & 10\textasciicircum{}-18\textasciicircum{} & All particles \tn 
% Row Count 6 (+ 2)
% Row 3
\SetRowColor{white}
\seqsplit{Electromagnetic} & Virtual photon (λ) & \seqsplit{Infinite} & Charged particles \tn 
% Row Count 8 (+ 2)
% Row 4
\SetRowColor{LightBackground}
Gravity & Graviton (not on spec) & \seqsplit{Infinite} & Particles with mass \tn 
% Row Count 10 (+ 2)
\hhline{>{\arrayrulecolor{DarkBackground}}----}
\end{tabularx}
\par\addvspace{1.3em}

\begin{tabularx}{5.377cm}{X}
\SetRowColor{DarkBackground}
\mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Feynman Diagrams}}  \tn
% Row 0
\SetRowColor{LightBackground}
\mymulticolumn{1}{x{5.377cm}}{} \tn 
% Row Count 0 (+ 0)
\hhline{>{\arrayrulecolor{DarkBackground}}-}
\end{tabularx}
\par\addvspace{1.3em}


% That's all folks
\end{multicols*}

\end{document}