
Docker Basics Cheat Sheet
by amicheletti via cheatography.com/39488/cs/12295/

Docker ImageDocker Image

docker images See all
available
images

docker build -t <name> Create an
image with a
pretty name
(you must
define the Do
ckerfile in
the folder)

docker tag <name> username/repositor
y:tag

This tags an
image ready
to be sent to
a repository

docker push username/repository:tag Push the
image to the
remote
repository

docker search <keyword> Search for
public reposi‐
tories

Docker Images are the base for containers and are similar to .is
o files. They can be for example the image of your app and contain
everything needed to run the application.

These images can be local or in repositories (and marked with an
tag)

To create images, you must create a Dockerfile with some
docker commands to specify how that image will be created, for
example to setup the environment and a BaseImage.

ServicesServices

Services (cont)Services (cont)

To run it you must first start: docker swarm init
Then run it giving a name:
docker stack deploy -c docker-compose.yml <app_n
ame>
To see the details of containers running in your service, run:
docker stack ps <app_name>
Now each time you request your app (via browser, for example), the
load-balancer will help you distributing the requests to each replica.
To put it down, docker stack rm <app_name>
This puts down the app, but not the "one-node" swarm we created. Use:
docker swarm leave --force

Docker Swarm is available only for version "3"

Docker ContainerDocker Container

docker run <image> Run the image, starting a
Container

-d Run in detached mode (in
background)

-p 4000:80 Maps the port 80 of the image
to the host port 4000

--rm Removes the container when
exited

docker ps List the running containers
(you can check container id)

docker ps -l List all the containers (you can
check container id)

docker stop <container_
id>

Stop the container

When you run an image with you are starting a Container, so
container is the runtime instance of an image, and consists of the
image, an execution environment and a standart set of instructions.

SwarmSwarm

docker swarm init Initialize a swarm and become
swarm manager

docker swarm join Join a swarm as worker

docker swarm leave --force Leaves the current swarm

With Docker you can increase resource and capacities by creating a
swarm, which are simply several machines (virtual or physical)
running a Docker and joined to a cluster.

Swarms have the swarm manager, which can issue docker
commands normally, and the workers which are only there to
provide capacity.

http://www.cheatography.com/
http://www.cheatography.com/amicheletti/
http://www.cheatography.com/amicheletti/cheat-sheets/docker-basics

Different pieces of the app are called “services” For example, a
service for storing application data in a database, a service for the
front-end, etc.
Services are just “containers in production.” A service only runs one
image, but it manages for example what ports it should use and how
many replicas of the container should run.
To define a service, you'll need an docker-compose.yml file.
For example:
version: "3"
services:
 web:
 image: amicheletti/get-started:part1
 deploy:
 replicas: 5
 resources:
 limits:
 cpus: "0.1"
 memory: 50M
 restart_policy:
 condition: on-failure
 ports:
 - "80:80"
 networks:
 - webnet
networks:
 webnet:
Here you define the image to be loaded, how many replicas, the
resource limits and the restart conditions.

By amichelettiamicheletti
cheatography.com/amicheletti/

Published 17th July, 2017.
Last updated 14th July, 2017.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/amicheletti/
https://readable.com

	Docker Basics Cheat Sheet - Page 1
	Docker Image
	Docker Container
	Services
	Swarm

