Cheatography

SPI Board Review Cheat Sheet by Alyssabruestle1 via cheatography.com/170636/cs/37156/

Acoustic Variable	S
Pressure	concentration of force in
(Pascals (Pa)):	an area
Density	concentration of mass in
(1 (10)	

 (km/cm^3):
 a volume

 Distance (cm or mm):
 refers to the distance a particle moves.

Used to differentiate between the different types of waves (heat, light, sound etc). If one of the 3 variables have rhythmic oscillations then it is a sound waves.

Basic Review

All waves carry what?		
	Pe	
Sound must travel in a line	(m	
Straight	or	
	Fr (N	
ALL sound waves are and		
Longitudinal and mechanical	(V	
Sound (mechanical waves) need a to travel through		
Medium		
Molecules in a sound wave are and	In (V	
Compressed and rarefied		
Acoustic Propagation Properties		
The effect medium has on sound waves.	Δr	
Bioeffects	(P	
The effects sound waves have on body tissue.		
What are 2 types of mechanical waves?		
Transverse and longitudinal.	W	
What is the average speed of sound in soft tissue?	(11	
1540 m/s OR 1.54 mm	_	
Another word for stiffness is?		
Bulk modulus		

С

cheatography.com/alyssabruestle1/

By Alyssabruestle1

Basic Review (cont)

Stiffness and speed are related.
Directly; increased speed = increased
stiffness.

Speed and density are _____ related.

Inversely; increased speed = decreased density.

Sound travels the same speed no matter what _____.

Frequency; 5Mhz probe and 15 Mhz probe will travel at the same speed.

Acoustic Parameters

Period (microsec- onds):	Time it take to complete one cycle.	Source, NO
Frequency (MHz):	# of cycles per second.	Source, NO
Power (Watts):	Rate of energy	Source, YES by adjusting output power.
Intensity (W/cm^2)	Concentration of energy.	Source, YES by adjusting output power.
Amplitude (Pa):	The difference between the baseline and peak of a wave (bigness).	Source, YES by adjusting output power.
Wavelength (mm):	Distance to complete one cycle. (1.54m- m/frequency)	Source AND medium, NO

Acoustic Parameters (cont)

Propag-	How fast a sound	Medium,
ation	wave travels	NO
speed	through a medium.	
(m/s)		

Used to define characteristics of a continuous wave (wave that is unable to produce an image).

- Period and frequency are reciprocals.

- Frequency is inversely related to period and wavelength.

- Wavelength and period are directly related.

- Propagation speed is determined by stiffness and density.

Intensity

Used to evaluate tissue exposure to sound
energy
Determines the effects sound has on tissue.
Intensity is important when studying what?
Bioeffects
The strongest intensity is at they of
the beam.
Center/Focus (smallest area).
What intensity is the most important when
studying bioeffects?
SPTA
SPTP is the intensity
Highest
SATA is the intensity.
Lowest
ALL intensities have units of?
W/cm^2 (power/area)

Not published yet. Last updated 17th February, 2023. Page 1 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

SPI Board Review Cheat Sheet by Alyssabruestle1 via cheatography.com/170636/cs/37156/

5 Parameter	s of Pulsed Sound	
Pulse duration (microsec- onds):	Time is takes to complete one pulse.	Source, NO
Spatial Pulse Length (mm):	Distance it takes to complete one pulse.	Source, NO
Pulse Repetition Period (PRP):	Time from the start of one pulse to the start of the next (includes transmit and receiving time).	Source, YES by adjusting depth (Directly related).
Pulse Repetition Frequency (PRF) (kHz):	# of pulses per second.	Source, Yes by adjusting depth (inversely related).
Duty Factor (%):	Percentage of time that the pulse is on.	Source, YES by adjusting depth (inversely related).

Characteristics used to define a pulse wave (wave that is able to produce an image).

- A pulse is made up of multiple cycles.

- 3 out the 5 parameter can be adjusted using depth.

How Sound Travels Through Media

Attenuation

Decrease in power, intensity, and amplitude due to sound waves decreasing as they propagate through media.

By Alyssabruestle1

cheatography.com/alyssabruestle1/

How Sound Travels Through Media (cont)

Distance and attenuation are re	elated.
Directly; increased distance = increa attenuation.	ased
Frequency and attenuation are related.	_
Directly; increased frequency = increased attenuation.	
3 processes that contribute to attenua	ation:
1. Reflection 2. Scattering 3. Absorp	otion
2 types of reflection (energy reflected	back):
1. Specular: smooth boundary, one direction 2. Diffuse: irregular border, multiple directions.	,
Scattering	
Waves redirected in many directions to small tissue interface; when tissue wavelength. Directly related to frequency.	s due e is <
Rayleigh scattering	
When structures are MUCH smaller the beams wavelength. EX: RBC. Rayleigh scattering = frequency^4. are directly proportional; increased	than They

ring.

Absorption

Ultrasonic energy is converted into heat. Directly related to frequency.

Attenuation Coefficient (dB/cm)

Used to compare the amount of attenuation in certain circumstances. Measured in decibels for when sound travels 1 cm.

Total attenuation = Attenuation coefficient x Distance (cm)

EX: depth = 5cm AC = 2 dB/cm then total attenuation = 10 dB.

Attenuation Coefficient in soft tissue = frequency/2

Not published yet. Last updated 17th February, 2023. Page 2 of 2.

How Sound Travels Through Media (cont)

Half layer thickness (penetration depth or half-boundary layer)
The distance sound travels in tissue that reduces intensity in half; Thin half layer = attenuates more
Impedance (rayls)
Resistance to sound traveling in a medium. Impedance = density x speed.
Normal incidence
Sound beam strikes boundary at 90 degrees (orthogonal, perpendicular, right). Reflection occurs if the boundaries have different impedances.
Oblique incidence
Sound beam strikes at any other angle other than 90 degrees; angle of incidence = angle of reflection.
Incident intensity (%)
Intensity before striking boundary; incident intensity = reflected intensity + transmitted intensity.
Reflected intensity
Intensity of sound wave after striking boundary and retuning.
Transmitted intensity
intensity of sound wave after striking boundary.
Refraction
Transmission with a bend. Can only occur IF 1. oblique incidence and 2. different propagation speeds of 2 media.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com