bio110 Cheat Sheet

by aly cha via cheatography.com/165428/cs/34640/

Bonds and F	Polarity	Mendel an	d the Gene (cont)	Isomers		Carbohydrates (cont)
	atom's attraction for electrons in a	codomi- nance	two dominant alleles affect the phenotype	structural	different covalent arrangements	- built from <i>monosaccharides</i>
ivity covalent bond (higher when atom more strongly pulls shares electron		epistasis	in distinct, separate ways traits determined by two or more genes,	Cis- Trans	same covalent bonds, differ in spatial arrang- ements	Lipids
	more strongly pulls shares electron					 does not form polymers <i>hydrophobic</i> mostly non-polar (hydrocar-
polarity	towards oneself) <i>polar</i> when electrons are		one gene can alter phenotypic expression of gene	enanti- omers	mirror images of each other	bons) - includers fats, phospholipids,
	shared unequally		at separate locus	microscopy	/	steroids
	because an atom is more electrone-	polar cova	lent bonds in water	light microscope	most used in	Proteins - made from <i>amino acid chains</i>
gative hydrogen bonds form when H covalentaly bounds to electronegative atom is also attracted to another electronegative	form when H covalentaly bounds to electronegative	 polar due to electronegativity of oxygen uneven distribution of charge polarity allows water molecules 		scanning electron miscro- scope	n studying the	that are joined from <i>peptide bonds</i> (carboxyl group to amino groups)
	attracted to another	to form hydrogen I	oonds	transm- ission	used to study internal structure	 catalyze rxns, structure support, transport, defense, movement
	atom electrone-	Properties of Water		electron of cells microscope	water molecule is released eac	
gative partners are usually O or N in living cells	Cohesive behaviour	bring water up roots of plants, surface tension		of Diseases	time a peptide bond is formed (dehydration synthesis)	
Mendel and the Gene		ability to	high specific heat	(memorize)	Dominant: huntington	Phospholipids
phenotype	outward	moderate	capacity due to hydrogen bonds	disease, achrondoplasia		- hydro philic head
	appearance	temper- ature			Recessive: Cystic	 hydrophobic tail amphipathic (having hydrop-
genotypes	allele combination	expansion		fibrosis, Tay-Sachs, Sickle cell anemia		hilic and phobic
progeny	apon	upon freezing	than water, floats	X-Linked R	ecessive: colour	parts - spontaneously self-assemble
Complete dominance	dominant allele masks recessive	versatility as a	polar dissolves polar		Duchenne muscular Hemophilia	into bilayer when added to water
incomplete	allele blending of	solvent		Carbohydra	ates	
incomplete dominance	phenotypes ie pink flower from red and white			-	nd polymers of sugars ade from multiples of	

By aly cha

cheatography.com/aly-cha/

Not published yet. Last updated 17th October, 2022. Page 1 of 4.

bio110 Cheat Sheet by aly cha via cheatography.com/165428/cs/34640/

sickle cell	anemia	other cell stru	ictures	the nucle	a	golgi appara	tus and lysosomes
 abnorma other sick 	shaped exterior al interactions with le-cells reducing o carry oxygen	peroxisome	contain enzymes that remove hydrogen atoms from various	basic functions nuclear envelope	contains most of cell's genes double membrane, each membran	gogli apparatus	processes and modifies proteins from ER to ship to target locations
plants and	d some algae		substrates and transfer them to oxygen	nuclear	consists of a lipid bilayer regulate entry and	lysosomes	compartment of enzymes, hydrolyzes
gameto- phyte	makes haploid spores by meiosis a haploid that spores grow into via mitosis	centro- somes and centrioles	help organize microtubule assembly in animal cells	nuclear nuclear lamina	exit of molecules maintains shape of nucleus (composed of protein filaments)		proteins, fats, polysaccharides, nucleic acids, work best in acidic environments
	cells grow by mitosis	dna replicatio	n keeps dna from	endoplasi	mic reticulum	meiosis cell cycle	
organisms	to haploid multicellular rganisms haploid adults produce	Proteins	coming apart (reannealing)	smooth	oth synthesis lipids, metabolize carbohydr- ates, detoxifies poisons, stores calcium ions	prophase I	chromosomes condense,
-	by mitosis	topois- omerase	prevent dna from uncoiling				crossing over (synapsis) takes place
amino aci hydrop- hobic	carbon rich side chains(in many	ch side hydrogen bonds many to separate the	rough	site for protein synthesis, produces transport vesiclres	metaphase I anaphase I	tetrads align in center of the cell chromosome	
hydrop-	membrane bound proteins) hydrogen bonds	DNA polymerase	replicates DNA to build a new one		that distribute lipids and proteins to other components of the		migrate to opposite sides, chromatids are still joined by centromeres
hilic charged	work well with	Ligase	puts together the DNA strands	- account	system		
	oppositely charged amino acids or other molecules	primase	builds primers (made of RNA) for polymerase to build on	membrane in the cell - continuous with nuclear envelope	telophase I	cytokinesis occurs, two daughter haploid cells are formed	
endosymbiont theory modern eukaryotic cells evolved from prokaryotic cells that were engulfed by bigger prokaryotic		okazaki fragments	sequences of DNA neucleotides on the lagging strand that will		0 0 0 -0-P-0-P-0+Ade	prophase II enosine	chromosomes move towards center
cells. consistent with theory that all organisms arose from a single common ancestor		later be bonded together by ligase	0-		Metaphase II	chromosomes aligned at center, centromeres facing opposite directions	
						anaphase II	chromatids separated, move towards poles

By aly cha cheatography.com/aly-cha/ Not published yet. Last updated 17th October, 2022. Page 2 of 4.

bio110 Cheat Sheet by aly cha via cheatography.com/165428/cs/34640/

meiosis cell	cycle (cont)	cell cycle clo	ck		cell cycle in I	mitosis	subphases of	of interphase (cont)
telophase II	cytokinesis divides into four nuclei, nuclear membrane develops, four daughter cells or gametes are produced	During G ₁ , the do of cyclin continues, the Cdk component MPF is recycled.	and	Synthes begins in 1 phase and through G cyclin is pr from degr during this accumulat	continues 2. Because otected adation s stage, it es. prophase	centrosomes have formed, chromo- somes aren't seen clearly chromosomes condense, mitotic spindle starts to	S phase cyclins and cycli dee- pendent Kinases (Cdk)	duplication of DNA always present but fluctuate during cell cycle based on concentrations of cyclin
haploid dau	-	Degraded cyclin Cyclin is degraded	G1 G2 checkpoi		Cyclin accumulation	form, microtubules lengthen moving centrosomes	G2	final subphase, more growth and protein synthesis
Abnormal C numbers Aneuploidy	when nondisjun- ction occurs in the fertilization of gametes	During anaphase, the cyclin compon- ent of MPF is degraded, terminating the M phase. The cell enters the G ₁ phase.	MPF promotes mitosis by phos- phorylating various proteins. MPF's activity peaks during metaphase.	Cyclin Cyclin co with Cdk, p MPF. When MPF molecu accumulate passes the C checkpoint begins mito	rodromet- enough , taphase ⁵ 2 and	away from each other nuclear envelope fragments, kineto- chore formed on centromeres	Maturation promoting factor (MPF)	cyclin-Cdk complex that triggers cell passage past G2 phase into M phase
monosomic zygote	zygote only has one copy of a particular chromosome		PRASMC HETCHANN (IN: retrooks endownon data shel faktor endown barne gordness and other gentretic metabolic processo, the resplicit	Nuclear evenings of medicar evolutions medicar protection process continuous with Nucleakan committee	metaphase	chromosomes align in the center of the cell chromosomes are	M checkpoint	won't enter anaphase unless chromosomes are all attatched to
trisomic	zygote has three copies of a chromosome	And a set of the set o	structure involved in pro	Plasma membrane: membrane endoting base membrane endoting the cell	split and sister chromatids move to opposite poles		spindle microt- ubules at kinete- chores, may delay	
Aneuploidy somes	(down syndrome)	Components art make of components art make of components art make of components are made of components and components are made of components are made o		thing and the second se	teleophase workers (mail brown to omplexer, this bod it do mail bod bit do mail bit of the mail of the	fibers disappear and membrane reforms around each set		anaphase to ensure daughter cells receive correct # of chromosomes
XXX	healthy, no unusual physical features	ben coverti if 6 water		macromolecules are hydrolyzed	cytokinesis our of an Animal Cell	cleavage of cell and its contants divide into 2	of interphase	all three subphases e but chromosomes
XXY (kline- felter syndrome)	extra X chromosome in males	plant cell	Rough refocution smooth refoolsanic refoolamic		properly resp mechanisms	rs when cells don't bond to control 6 (uncontrolled	phase	licated during S
Monosomy (turner syndrome)	produces XO females who are infertile	ereitereitereitereitereitereitereiterei	- Andread Contraction of the second contract	Hazarata (and a brand) Haz	mitosis) Marking Marking Mark	f interphase growth phase: can continue on to other phases once receives go ahead at this stage		

By aly cha cheatography.com/aly-cha/

Not published yet. Last updated 17th October, 2022. Page 3 of 4.

bio110 Cheat Sheet by aly cha via cheatography.com/165428/cs/34640/

Sources of	f genetic variation	DNA features (cont)			
1	over during prophase lent assortment of nes	phosphate group between 5' and 3'	deoxynucleotides		
- Random Mutations nondis-			phosphate group of one nucleotide bonds to the 3/ oxygen of another		
junction	meiosis that results		nucleotide		
	intoo mayn or too few chromosomes: <i>down syndrome</i>	5' to 3'	on top (watson), runs 3' to 5' on bottom(crick)		
deletion	<i>(trisomy)</i> portion of chromo- somes are lost, caused by viruses or chemicals	bonds between the two strands	non covalent hydrogen bonds with compli- mentary base (base pairs)		
duplic- ation	gene sequence is repeted one or more times within one or more chromosomes	pyrimi- dines	thynin and adenine, single ring structure		
inversion	certain gene segments become	purines	guanin and cytosine, double rings		
	free and then are reversed		- 2 types of nucleic acids (DNA and RNA)		
transl- ocation	part of the chromosome changes places with another part	'			
		nondisiuncti	ion		

DNA features

nucleotide	phosphate group, 5
	carbon sugar,
	nitrogenous base
nitrog-	adenine, guanine,
enous	thynine, cytosine
base	

By aly cha cheatography.com/aly-cha/ Not published yet. Last updated 17th October, 2022. Page 4 of 4.