Cheatography

Modern Business Statistics Interval Estimation Cheat Sheet by allyrae97 via cheatography.com/29652/cs/8745/

A point estimator cannot be expected to provide the exact value of the population parameter.	An interval estimate can be computed by adding and subtracting a margin of error to the point estimate. Point Estimate +/- Margin of Error	Interval x^- is the sample mean, 1-a is theEstimate $z(a/2)$ is the z value providing aof Mean:of the standard normal probabil $^{-}\pm z(\alpha/2)$ population standard deviation, normal σ/\sqrt{n} σ/\sqrt{n}	n area of a/2 in the upper ta ity distribution, σ is the
The purpose of an interval estimate is to provide information about how close the pointThe general form of an interval estimate of a population mean is: x^- + Margin of Error estimate is to the value of the parameter.		Sample Size for an Int.I Estimate of a PopMargin of Error: $E=z(\alpha/2)$ Necessary S \sqrt{n} 2)/ E^{2}	. Mean ample Size: n = $z(\alpha/2)$) ²
nterval Estimate of a Pop. Mean:		Interval Estimateof a Population Proporti	on
Interval x^{-} =the sample mean, 1-a=the confidence coefficient, Estimate: t(a/2)=the t value providing an area of a/2 in the upper tail of a $x^{-} \pm t$ t distribution with n-1 degrees of freedom, s=the sample $(\alpha/2)$ standard deviation, n=the sample size s/\sqrt{n}		The general form of an interval estimate of a population proportion is: \vec{p} + Margin of Error	
		Margin of Error: E = $z(\alpha/2) \sqrt{p}(1-p)/n$	Necessary Sample Size: $n=z(\alpha/2)^2 p* (1-p)$
n=30 is usually an adequate sample size		<i>p</i> *=.5	

By allyrae97

cheatography.com/allyrae97/

Published 2nd August, 2016. Last updated 2nd August, 2016. Page 1 of 1. Sponsored by Readability-Score.com

Measure your website readability! https://readability-score.com