

Chapter 7: Sampling and Sampling Distributions Cheat Sheet by allyrae97 via cheatography.com/29652/cs/8742/

Definitions		
Element: The entity on which data are collected	Population: A collection of all the elements of interest	
Sample: A subset of the population	Sampled population: The population from which the sample is collected	
Frame: a list of elements that the sample will be collected from		

Sampling from an Infinite Population

Populations generated by an ongoing process are referred to as Infinite Populations: parts being manufactured, transactions occurring at a bank, calls at a technical help desk, customers entering a store

Each element selected must come from the population of interest, Each element is selected independently.

Sampling Distribution of Expected value of x: Standard Deviation of x: $E(x_{-}) = u$ Finite Population: σx -Infinite Population: $\sigma x = \sigma / \sqrt{n}$ $=\sqrt{N-n/(N-1)}$ (σ/\sqrt{n}) Z-value at the upper Area under the curve to the left of the endpoint of interval=upper endpoint=largest value-u/ox- on largest value-u/oxthe z table Z-value at the lower Area under the curve to the left of the endpoint of the interval=lower endpoint=smallest value-u/ox- on smallest value-u/oxthe z table Probability=area under When selecting a different sample curve to left of upper number, expected value remains the endpoint-area under same. When the sample size is curve to left of lower increased the standard error is

decreased.

Sampling from a Finite Population		
Finite Populations are often	A simple random sample of size n	
defined by lists: Organi-	from a finite population of size N: a	
zation Member Roster,	sample selected such that each	
Credit Card Account	possible sample of size n has the	
Numbers, Inventory Product	same probability of being selected	
Numbers		

Point Estimation	
Point Estimation is a form of statistical inference.	We use the data from the sample to compute a value of a sample statistic that serves as an estimate of a population parameter.
x is the point estimator of the population mean	s is the point estimator of the population standard deviation
<i>p</i> ₋ is the point estimator of the population proportion	$x=(\sum xi)/n$
s=√∑(xi-□ □-)^2/n-1	<i>p</i> .=x/n

Sampling Distribution of	
Expected value of \Box \Box =E(p -)= p	Standard Deviation of p-;
Finite Population: σp - = $\sqrt{N-n}/(N-1)$)($\sqrt{p}(1-p/n)$	Infinite Population: $\sigma p = \sqrt{p(1-p/n)}$
Z-value at the upper endpoint of the interval=- largest value-p/ σp -	Area under the curve to the left of the upper endpoint equals z value of largest value-p/ σp -
Z-value at the lower endpoint of the interval=- smallest value-p/ op-	Area under the curve to the left of the lower endpoint=z=value of mallest value-p/ op-
Probability=area under curve to left of upper endpoint-area under curve to left of lower endpoin	

endpoint

By allyrae97 cheatography.com/allyrae97/

Published 1st August, 2016. Last updated 2nd August, 2016. Page 1 of 1. Sponsored by Readable.com

Measure your website readability!

https://readable.com