Cheatography

Chapter 7: Sampling and Sampling Distributions Cheat Sheet by allyrae97 via cheatography.com/29652/cs/8742/

		0.00		
De	i Ta	ΠП	\mathbf{n}	16
DU		11.1		LC

Element: The entity on which data are collected

Population: A collection of all the elements of interest

Sample: A subset of the
populationSampled population: The population
from which the sample is collected

Frame: a list of elements that the sample will be collected from

Sampling from an Infinite Population

Populations generated by an ongoing process are referred to as Infinite Populations: parts being manufactured, transactions occurring at a bank, calls at a technical help desk, customers entering a store Each element selected must come from the population of interest, Each element is selected independently.

Sampling Distribution of

Expected value of x_{-} : E(x_{-}) = u	Standard Deviation of x_{-} :
Finite Population: σx -= $\sqrt{N-n}/(N-1)$) (σ/\sqrt{n})	Infinite Population: $\sigma_{X-} = \sigma / \sqrt{n}$
Z-value at the upper endpoint of interval=- largest value-u/ <i>ox</i> -	Area under the curve to the left of the upper endpoint=largest value-u/ox- on the z table
Z-value at the lower endpoint of the interval=- smallest value-u/ <i>σx</i> -	Area under the curve to the left of the lower endpoint=smallest value-u/ σ x- on the z table
Probability=area under curve to left of upper endpoint-area under curve to left of lower endpoint	When selecting a different sample number, expected value remains the same. When the sample size is increased the standard error is decreased.

Sampling from a Finite Population

Finite Populations are often	A simple random sample of size n
defined by lists: Organi-	from a finite population of size N: a
zation Member Roster,	sample selected such that each
Credit Card Account	possible sample of size n has the
Numbers, Inventory Product	same probability of being selected
Numbers	

Point Estimation

Z-value at the lower

smallest value-p/ op-

endpoint of the interval=-

Point Estimation is a form of statis- tical inference.	We use the data from the sample to compute a value of a sample statistic that serves as an estimate of a population parameter.			
x_{-} is the point estimator of the population mean	s is the point estimator of the population standard deviation			
<i>p</i> - is the point estimator of the population proportion	<i>x</i> _=(∑ <i>xi</i>)/n			
<i>s</i> =√∑(<i>xi</i> -□ □_)^2/n-1	<i>p</i> ₋=x/n			
Sampling Distribution of				
Expected value of \Box $\Box_{-}=E(p_{-})=p$	Standard Deviation of <i>p</i> -;			
Finite Population: $\sigma_P = \sqrt{N-n}/(N-1))(\sqrt{p(1+1)})$				
Z-value at the upper endpoint of the inter largest value-p/ op-				

Area under the curve to the left of the lower endpoint=z=value of mallest value-p/ *op*-

Probability=area under curve to left of upper endpoint-area under curve to left of lower endpoin

By allyrae97

cheatography.com/allyrae97/

Published 1st August, 2016. Last updated 2nd August, 2016. Page 1 of 1. Sponsored by Readable.com

Measure your website readability! https://readable.com