Definitions

Element: The entity on which data are collected

Sample: A subset of the population

Population: A collection of all the elements of interest

Sampled population: The population from which the sample is collected

Frame: a list of elements that the sample will be collected from

Sampling from an Infinite Population

Populations generated by an ongoing process are referred to as Infinite Populations: parts being manufactured, transactions occurring at a bank, calls at a technical help desk, customers entering a store

Sampling Distribution of

Expected value of x :
$E(x)=u$
Finite Population: σx
$=\sqrt{ } N-n /(N-1))(\sigma / \sqrt{ } n)$
Z-value at the upper endpoint of interval=largest value-u/ax
Z-value at the lower endpoint of the interval=smallest value-u/ σx
Probability=area under curve to left of upper endpoint-area under curve to left of lower endpoint

Standard Deviation of x :

Infinite Population: $\sigma x=\sigma / \sqrt{ } n$

Area under the curve to the left of the upper endpoint=largest value-u/ σx. on the z table
Area under the curve to the left of the lower endpoint=smallest value-u/ σx on the z table

When selecting a different sample number, expected value remains the same. When the sample size is increased the standard error is decreased.

Each element

 selected must come from the population of interest, Each element is selected independently.| Sampling Distribution of | |
| :---: | :---: |
| Expected value of x : $E(x)=u$ | Standard Deviation of x : |
| Finite Population: σx $=\sqrt{ } N-n /(N-1))(\sigma / \sqrt{ } n)$ | Infinite Population: $\sigma x=\sigma / \sqrt{ }$ n |
| Z-value at the upper endpoint of interval=largest value-u/бx | Area under the curve to the left of the upper endpoint=largest value-u/ σx. on the z table |
| Z-value at the lower endpoint of the interval=smallest value-u/ σx | Area under the curve to the left of the lower endpoint=smallest value-u/ σx on the z table |
| Probability=area under curve to left of upper endpoint-area under curve to left of lower endpoint | When selecting a different sample number, expected value remains the same. When the sample size is increased the standard error is decreased. |

Sampling from a Finite Population

Finite Populations are often defined by lists: Organization Member Roster, Credit Card Account Numbers, Inventory Product Numbers

Point Estimation

Point Estimation is a form of statistical inference.
x is the point estimator of the population mean
p - is the point $\quad x=\left(\sum x i\right) / n$
estimator of the
population
proportion
$s=\sqrt{ } \sum(x i-\square \quad \quad \quad=\mathrm{x} / \mathrm{n}$

ㅁ.)^2/n-1
cheatography.com/allyrae97/

Published 1st August, 2016.
Last updated 2nd August, 2016.
Page 1 of 1 .

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

