
3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 1Lec 1

AbstractionAbstraction
Removing(or hiding) unnece‐
ssary complication/detail
Good: Array.Sort();
Bad: nested for loops etc.

Abstraction LevelsAbstraction Levels
Programming Languages(As‐
sembly low) ← High
Compiler
OS
Architecture
Circuits
Physics ← Low
API- Defines operations (and
efficiencies)

API-Application ProgrammingAPI-Application Programming
InterfaceInterface
High level specs of ops, e.g.
Array, Add, Remove, Contains,
IsEmpty, Graphics.Draw, etc.

Levels within ProgramsLevels within Programs
API ← High
Classes/Data Structs
Functions/Methods
Variables/Statements
Types/Operators ← Low

Software Practices SteppsSoftware Practices Stepps
1. Analysis – what do we need to
do?
2. Design – how do we do it?
3. Implement it - Coding Yay!
4. Test, debug, improve
5. Go back to 1-4 as needed

Why Comment/Document?Why Comment/Document?
Your code (in the RW™) will
outlive you. Make your succes‐
sor’s life easier Make your
(future) life easier

Lec 1 (cont)Lec 1 (cont)

XML SyntaxXML Syntax
<tag> info </tag> e.g.,
<summary> … </summary
<param name=‘val’> … </para‐
m>

When to Comment?When to Comment?
ALL files must have a header
comment!
ALL methods must have a
header comment
All fields/properties should have
a comment

Why XML?Why XML?
Machine readable, parsable,
intellisensable

C# source files can have
structured comments that
produce API documentation for
the types defined in those files.
The C# compiler produces an
XML file that contains structured
data representing the comments
and the API signatures. Other
tools can process that XML
output to create human-rea‐
dable documentation in the form
of web pages or PDF files, for
example.

Lec 2Lec 2

DelegatesDelegates
A delegate is a way to provide a
TYPE for a function return type,
parameter list/types
You can use delegate types to
store functions in variables “call”
those saved functions using the
variable name

Lec 2 (cont)Lec 2 (cont)

Delegates are fully object-or‐
iented, delegates encapsulate
both an object instance and a
method.
Delegates allow methods to be
passed as parameters.
Delegates can be used to define
callback methods.
Delegates can be chained
together; for example, multiple
methods can be called on a
single event.
Methods don't have to match the
delegate type exactly. i.e.
Variance in Delegates.

Delegate is the definitionDelegate is the definition of the
“Type” of function. Lookup is just
a name I choose!

ExampleExample public delegate int
Lookup(string name);

Delegates as ParamsDelegates as Params
Delegates allow you to “pass”
functions to other functions int
doit(string x){ … } // ← Meets
Delegate Requirements
…
Evaluate(“1+var”, doit)

Lec 3Lec 3

C# Similarities w/ JavaC# Similarities w/ Java
Compiled to an intermediate
form Run with a “runtime
environment”
Automatic memory management
Syntax mostly the same (or one-
to-one transition)

Lec 3 (cont)Lec 3 (cont)

C# Differences w/ JavaC# Differences w/ Java
C# functions are “first-class”
(see delegates)
Generics can use primitives
(List<int> vs. <Integer>)

C# Access ModifiersC# Access Modifiers
public, protected, and private
are the same as in Java.
Internal means any method in
the compilation unit (e.g.,
project) can treat the variable as
public, but “outside” users treat
it as private.
Why do we have these?
Answer: Because programmers
are human and programming is
hard. These modifiers “say”:
Only allow the person most
familiar with the code to make
changes to data; e.g., the library
code itself has private variables
(such as the stacks) and only
the person writing that code
“knows enough” to use them.
The “outside world” user just
uses the Evaluate method.

Readonly declarationReadonly declaration
readonly int max_stack_depth =
5;
“variable” can only be set in
constructor (or in field declar‐
ation)

InterfacesInterfaces
Same as java
Contract for a method
(somewhat like a delegate)

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 1 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 3 (cont)Lec 3 (cont)

NamespacesNamespaces
Keep common terms separate
e.g.,
namespace Math { public
Vector{...} }
namespace Collections { public
Vector { … } }
Requires “using” statement
using Math;

Escaped StringsEscaped Strings
How do you put a “new line” into
a string?
Answer: “\n” The \ (back slash)
is called the “Escape Character”
Used to combine “regular
characters”, i.e., ‘n’ and ‘\’ to
form a special character
Common escaped characters: /t,
/n, /e
Example: string filename =
“c:\\documents\\files\\abc.txt”;
Note: Unix uses slashes, so you
don’t have to “double up”: (e.g.,
/home/germain)

Verbatim StringsVerbatim Strings
Use the @ symbol
Escaped strings are ugly :(hard
to read)
Remove some of the ugliness:
string filename = “c:\\documents‐
\\files\\abc.txt”; vs. BAD: string
filename = “c:\documents\files\a‐
bc.txt”; GOOD: string filename =
@“c:\documents\files\abc.txt”;
Useful sometimes in regular
expressions

Lec 3 (cont)Lec 3 (cont)

Interpolated Strings - $Interpolated Strings - $
Do This! (Almost always!)
How do you put variable values
into a string?
Old, Bad way: string s = “Your
score of ” + score + “ is a good
one!”;
New, Good way: string s =
$“Your score of {score} is a good
one!”;

Solutions & ProjectsSolutions & Projects
Solution → Spreadsheet
Contains:
Projects FormulaEvaluator
(Library Application)
FormulaEvaluatorTester
(Console Application)
Projects Contain:
code files, etc.
Contain References to other
projects/libraries
Tester must “reference” Formul‐
aEvaluator

LambdasLambdas
Shorthand notation for: Defining
small anonymous functions
Inline
Useful for: Testing, “One offs”,
Some GUI applications, etc.
Syntax:
([param1, param2, …]) => {
code };
([param1, param2, …]) =>
expression to return;

Lec 4Lec 4

Version Control UseVersion Control Use
Collaborative development
Branching/Merging Code
archeology/File history
Differences
Backup

GIT FunctionsGIT Functions
Committing: Save work as a
“Version” with a “Message”
Branching: Try something else
out which may or may not come
back into the main branch later
via Merging.
Push/Pull: Send changes from
one place to another
TAG: Like a “bookmark” to find a
particular state of your code
Code History: Compare one
Commit to Another
Diffs Split vs. Unified

ExtensionsExtensions
Extensions allow us to add “dot
methods” to classes we don’t
own, use this new functionality
as if it is “built in”
Example: name.CapitalizeFir‐
stLetters();

Lec 4 (cont)Lec 4 (cont)

IEnumerableIEnumerable
Guarantees that something is
countable and can be iterated
over Arrays, Lists, Trees, Dictio‐
naries, etc ← all are IEnume‐
rable
Can convert the above to “base”
types using: toList, toArray
Allows support for: foreach loop
Has a templated type
Is an Interface: GetEnumerator
Current (array → int current = 0;
)
MoveNext (array → current++;)
Reset() (array → current = 0;)

InterfaceInterface
A specification guaranteeing that
an implementing class will have
certain functions
Guarantee made by the
compiler
There is no guarantee the
functions work, just that they are
there.
Aside: Useful also with Polymo‐
rphism:
Movable x; // A Movable must
have a .move() method
Car c = new Car();
x = c; // public class Car :
Movable
x.move(); c.move()

EnumeratorEnumerator
Enumerator is an object that
allows iterating over the object

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 2 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 4 (cont)Lec 4 (cont)

IEnumerableIEnumerable
A high level type (interface) that
allows us to apply actions to a
list of objects
Useful with foreach loop
Useful when we don’t care (or
know) the underlying data
structure
Makes our code more robust
and general!

Lec 5Lec 5

Unit TestsUnit Tests
Test the “smallest” pieces of the
software system {[nl}}E.g.,
methods
Simplifies tests, simplifies
debugging
“Easy” to find the failure point

Self Contained TestsingSelf Contained Testsing
Tests should not rely on
“outside” state
Test should:
define data (e.g., build a
Dependency Graph)
Execute algorithm (e.g.,
remove/add dependencies)
{[nl}}Verify (e.g., using asserts)

Code ReviewCode Review
Higher Quality Code
Fewer Defects
Easier to Maintain
Developer Training Learn about
other parts of codebase Learn
about other techniques

Lec 6Lec 6

ImmutableImmutable
Strings are immutable, they
cannot change.
Thus once we write:
string s = “jim”;
That string object will _always_
contain “jim”
Question: s = “jess” does not
change the string, but instead
creates a reference.

MutableMutable
Example: a stack is mutable (it
can be changed),
Stringbuilder class allows us to
modify strings

Methods that Modify(Mutate) anMethods that Modify(Mutate) an
ObjectObject
are called mutators
The stack class is “Mutable”
Can be modified after creation
The string class is “Immutable”
Cannot be modified after
creation
Q: How can you make any
object Immutable (to a
programmer using your object?)
A: Make all fields/Properties/‐
setters PRIVATE! (protected)

Lec 6 (cont)Lec 6 (cont)

PropertiesProperties
C# has a convenient notation for
building getters/setters
Can control public/private of get
and set independently
Often properties are “backed” by
private member fields
As always, member fields
should default to private
“private” properties can often
just be private member variables
Example:
a private property could be used
for lazy instantiation of an
expensive field: e.g., private
password (get � if passwo‐
rd==null, do expensive
password get operation)

Lec 6 (cont)Lec 6 (cont)

PropertiesProperties
Properties are similar to named
fields in the object
Properties should be aspects of
an object that can be understood
independently of the rest of the
representation
Think, for example, of the
current hour of the day (from a
Date class where internal
representation is seconds since
a prior date)
Public properties (which is
usually the case) provide a
“contract” with user of your code
Has a convenient notation for
building getters/setters{[nl}} Can
control access to get and set
(i.e., private) independently
As always, don’t make every
member variable public
“private” properties can often
just be private member variables

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 3 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 6 (cont)Lec 6 (cont)

Func v.s. Delegate NotationFunc v.s. Delegate Notation
If you aren’t going to have (1)
any useful/descriptive words, or
(2) Or it is a “one off” then use
“Func” notation
delegate int MathOnTwoNum‐
bers(int x1, intx2);
int add(int a, int b) { … }
AddTwoNumbers f1 = (a,b) =>
a+b; // lambda to fulfill Delegate
Func<int,int,int> f2 = (a,b) =>
a+b; // lambda to fulfill Func
AddTwoNumbers f3 = add; //
regular function to fulfill Delegate
Func<int,int,int> f4 = add; //
regular function to fulfill Func

Delgate v.s. FuncDelgate v.s. Func
Why Use Delegate?
Named, Documented, Provides
More Context
Evaluate(string formula, Variab‐
leLookUpMethod lookup)
Why Use Func?
Shortcut, Types are “right there
to see”
Evaluate(string formula, Func<s‐
tring,int> lookup)

Lec 7Lec 7

Global VariablesGlobal Variables
Data that is accessible from
“anywhere” in the program
If a method modifies one, it is a
“hidden side-effect”
Software Practice - Almost
always:
Best Case: Data → Function →
return New Data
Nothing else changes!
Okay Case: Data → Function →
parameters “change” (see out/ref
params)

Lec 7 (cont)Lec 7 (cont)

MemoryMemory
Stack
Methods (and their Variables)
Heap
Objects
Methods go on the Stack
Variables in Methods go on the
Stack
Objects go on the Heap
Changing something about a
“Shared” (Aliased) variables is
“seen” by all other aliased
variables

Memory DiagramMemory Diagram
Every function should be labeled
on the stack
Every variable is kept on the
call/activation stack
References (to objects) have
“arrows” to heap
Value variables have values on
stack
Object methods should show
“this” explicitly on the stack
Every new object is kept on the
heap

Pass by Value & RefPass by Value & Ref
By Value
- a copy of the value is added to
the stack frame of the called
method
By Reference
- a “pointer” to the object is
added to the stack frame of the
called method

Lec 7 (cont)Lec 7 (cont)

In, Out, Ref ParamsIn, Out, Ref Params
In
- makes Reference constant
WARNING: does not make
object constant
Out
- refers to calling methods
variable
Places object “in” calling
methods variable
Must be assigned a value
Cannot use “what was there
before”
Ref
- refers to calling method
variable
Can use what is there
Does not have to assign a value
Out and Ref the same except
compiler enforces semantics

StructsStructs
Structs are like VALUE types
They go on the Stack
Unless part of an object
Let’s Draw a picture for
struct Pt { int x; int y; } main() {
Pt pt1 = new pt(); Pt pt2;

StructsStructs
Constructors allowed, but not
required
new() → calls constructor
Does not put object on heap
Can have methods
Getters/Setters/Properties
Usually do not!
Why do structs go on the stack?
Efficiency!
No allocation!
No deallocation/Garbage Collec‐
tion.

Lec 7 (cont)Lec 7 (cont)

Memory EfficencyMemory Efficency
the closer the data is to the CPU
the faster the memory (and the
more costly, thus there is less of
it)

Lec 8Lec 8

IEnumerableIEnumerable
What is the “High Level English”
meaning of an IEnumerable?
Guarantees a “list” of “stuff”
coming back.
What are some classes that
implement IEnumerable?
List, HashTable, BST, Array, etc.
IEnumerable iterable = new
BST();
IEnumerable iterable = new
List<string>(…); // etc
What does an IEnumerable
“give you”?
A way for OUTSIDE CODE to
“walk” the data:
foreach (var item in iterable) {
Print(item); }

IEnumerable uses anIEnumerable uses an
EnumeratorEnumerator
Implemented by an Enumerator
Class
Enumerator has low level functi‐
onality
Bool ← MoveNext // if there is
another item, return true
Current // return the current item

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 4 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 8 (cont)Lec 8 (cont)

LinqLinq
Adds “Database-like” syntax to
C# (somewhat modeled on SQL
database language).
Can convert IEnumerable to
Arrays or Lists
Using System.Linq;
public void doit(IEnumerable
container) {
List list = container.ToList();

Yield ReturnYield Return
C# has a way to Only partially
execute a function
Can later return and complete
more of it later!
This is called: Yield Return
Yield Return SAVES the entire
execution state of the method
call (i.e., the call (activation)
stack) for continued execution at
a future point!

Yield Return ExplainedYield Return Explained
When the line with yield return is
encountered:
The runtime saves the entire
STATE of the method
Local Variables
Parameters
When the method is called
again, the runtime restores the
state and continues
From the last point of execution!

Lec 8 (cont)Lec 8 (cont)

Why we need Yield ReturnWhy we need Yield Return
Example: Imagine a GUI with a
button that populates a textbox
with the next prime.
static IEnumerator iterator =
next_prime().GetEnumerator(); //
actually need Enumerator
void button_action()
{
iterator.MoveNext(); // hidden:
computes next prime and saves
state of method
text_box.Text = iterator.Current;
}

REGEXREGEX
[abc] ← Square Brackets: match
any character in here
a|b ← OR - Match an ‘a’ or ‘b’
character
a ← Match zero or more (little)
a’s
d+ ← Match one or more (little)
d’s
\d+ ← Escape: Match one or
more digits!
\s ← Match whitespace
a? ← Match zero or one little a’s
(a) ← If we find this, put it in
“group” 1
a$ ← a at end of string!

Lec 8 (cont)Lec 8 (cont)

Yield ReturnYield Return
Use when you either
CANNOT create entire list of
results
TOO COSTLY to create entire
list of results
Need to SPREAD computation
over longer time Might not need
all values!
Question: Binary Search Tree
with Nodes
{ Node left; Node right;}
How would you build the
iterator?
Answer: yield return can use
recursion!

Yield Return BSTpseudocodeYield Return BSTpseudocode
IEnumerable traverse(Node
current)
{
if (current == null) return;
yield return this.Value;
traverse (this.left);
traverse (this.right);
}

Func ⇔ Delegate shortcutFunc ⇔ Delegate shortcut
public delegate string Normal‐
ize(string); // Definition
Normalize function = s => s; //
Usage with Lambda
Func<string,string> function =
s=> s; // Func notation
Func is simply inline (shortcut)
notation for delegates without a
name.

Lec 8 (cont)Lec 8 (cont)

What does == do?What does == do?
== is REFERENCE equality
Are X and Y the same object in
memory.
overloaded ==
Can mean anything you want it
to mean, but…
Usually means VALUE equiva‐
lence “jim” == “jim”
.Equals
Means value equivalence

DRY -Don't Repeate YourselfDRY -Don't Repeate Yourself
Dry is a fundamental principles
of good software development
Don’t repeat Data!
Violate sometimes for speed
(can be a good reason)
Don’t repeat Code!
Violate sometimes because we
are lazy (bad reason)
Example: using extensions is a
good dry practice

Dry CodeDry Code
Move common code to helper
method(s) Make Library for
common code Use Extensions
Library

What is an Invariant?What is an Invariant?
A condition that must always be
true.
For example:
If A1 depends on B1
Then B1 must have A1 as a
dependee

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 5 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 8 (cont)Lec 8 (cont)

How do we ensure the InvariantHow do we ensure the Invariant
on this?on this?
public void ReplaceDependen‐
ts(string s, IEnumerable<string>
newDependents) { }
Answer: this function should not
touch Map 1 or Map 2 Answer 2:
this function should only use
addDependency and remove‐
Dependency

MVCMVC
Model - Data (and some
methods to compute on data)
View - What the user sees
Controller - Interactions between
User and Model

NameSpacesNameSpaces
SpreadsheetUtilities
Internal namespace to your
project for your use/protection
SS ← Added to project now
External namespace your project
“shows” to the world, similar to
System, or Math, or Collec‐
tions…

Lec 9Lec 9

Abstract ClassAbstract Class
Defines WHAT must be done
(via methods)
Defines Return and Parameter
Type Signatures
Defines generic (reusable) code
Defines generic data (if
applicable)
A child class can only implement
one
Can have a constructor

Lec 9 (cont)Lec 9 (cont)

InterfacesInterfaces
Defines WHAT must be done
(via methods)
Defines Return and Parameter
Type Signatures
No Code
No Data
A class can implement many
No constructor

MVCMVC
Model - Working on this now
Data→ Cells - Contents / Values
Functionality → Dependencies
(See requirements in Abstract
class)
View - GUI (not working on this
now)
Controller - actions available to
user
often initiated through the GUI
Not working on this now

Why Comment?Why Comment?
Shows that you understand your
code
Allows partners and future
developers to understand your
code before reading it line by
line
Can be used PRIOR to coding to
set specifications/reminders
Can be “scraped” to provide
external documentation

<inheritdoc><inheritdoc>
Does just that. {[nl}}Inherits
documentation from parent
(class)
Why is this DRY?
DRY since we don't repeat
ourselves/code

Lec 9 (cont)Lec 9 (cont)

How/When to CommentHow/When to Comment
Header Comment vs. Inline
Header - High-level overview of
desired functionality
Don’t “re-write” code in
comments
Question: What is “comment
rot”?
Inline
For sections of a long function
(alternatively, helper methods)
For tricky code
Use descriptive variable names
to alleviate the need for some
comments

Self-Documenting CodeSelf-Documenting Code
Wrong - “Don’t Comment your
Code!”
Right Comment for Why
Provide links to algorithms,
examples, docs
Rename complicated expres‐
sions with understandable
names

Lec 9 (cont)Lec 9 (cont)

DRYDRY
Do not repeat yourself
Do not repeat code
Use helper methods
Do not repeat data*
Transform requests/inputs into a
single standard form
Question: when “can” we repeat
data
Answer: in a very local location
(e.g., a single class file) where
invariants are set (e.g., input
into the dependents always
updates dependees) and only if
we get a strong efficiency boost
that (in your expert opinion) is
worth the SE hit.

Yield ReturnYield Return
Used for Enumerations (IEnum‐
erable)
Operationally: Saves Code/M‐
ethod Call Stack
Used for: “infinite” or “costly”
enumerations

Lec 10Lec 10

GSP- Good Software PracticesGSP- Good Software Practices
Good use of Versioning
Multiple Commits. Good Commit
Messages
Tags at “Releases”
Good use of Testing
Extensive Unit Tests
Well named/useful tests.
Documentation
READMEs
Located in Solution Folder (and
all Project Folders)
Hour tracking
Software Practice Section
Header Comments
Who, what, verification
Method and Field Docume‐
ntation

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 6 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 10 (cont)Lec 10 (cont)

DiagramsDiagrams
Intrinsically encode:
Basic functionality of each piece
How pieces fit together to form
the whole
Overall design philosophy

UML -Unified ModelingUML -Unified Modeling
LanguageLanguage
Unified Modeling Language
“Syntax” for drawing diagrams
Programming Language
agnostic
Not all fields/methods need to be
shown
Only those required for an
understanding

UML Visibility ModifiersUML Visibility Modifiers
- private
+ public
protected
underline static

ConnectivityConnectivity
Arrow indicates that one class is
aware of another Direction
indicates whom is aware of
whom

AggregationAggregation
Something is composed of
independent entities
When the “container” goes
away, the entities do not (“weak”
ownership)
e.g. A Course containing
Students, but the students don’t
“go away” when the course is
cancelled.

Lec 10 (cont)Lec 10 (cont)

CompositionComposition
Entities within are not whole on
their own (“strong” ownership)
e.g. A Student containing a
Transcript, and the transcript
“goes away” when the student
leaves the University

DiagramsDiagrams
UML:
Formal
Persistent documentation
“Suggests” more information
Whiteboard:
Less Formal
Might be erased
Likely to “miss” information
This information is likely to be
somewhere else (API file)

Incremental TestingIncremental Testing
Test incrementally!
The longer you go without
testing, the bigger your
“haystack” becomes
Catch design flaws early
Problems will become apparent
before bolting it all together
Keep the “haystack” small!
Testing is a lot like debugging

Complex SystemsComplex Systems
Butterfly effect
Even for a tiny change in an
obscure region of the code Run
the test suite!

Lec 10 (cont)Lec 10 (cont)

Regression TestingRegression Testing
Regression refers to “going
backward” (regressing)
When new code is added the
number of bugs goes up,
therefore the code “regresses”
Try to minimize this
Run existing (old) tests regularly
As code changes, tests might
start failing
Note: Sometimes the Test needs
to be updated
Test suite continuously grows
Never discard a valid test!
Must start test suite on “day one”
or it won’t get done
Must keep tests up to date
(prioritize them)
Or it won’t get done
Must run tests every day
Or it won’t get done!

Smoke TestsSmoke Tests
Subset of full suite
should run in < 5 minutes
if your entire suite runs quickly,
use them all!
Try to pick broad range of
coverage
Run them after every compile

Lec 10 (cont)Lec 10 (cont)

Code CoverageCode Coverage
100% coverage is often difficult
Huge systems – countless paths
Irregular interaction (e.g. GUIs)
That being said:
“Model” code is easier to cover
Eliminate “dead” code
You have access to the “white
box”

Gray Box TestsGray Box Tests
Combine Black Box and White
Box
First, design tests of the specif‐
ication (black)
Then, design tests for code
coverage (white)
Keep them both in a test suite

Debug AssertationsDebug Assertations
Assertations in regular code:
Debug.Assert(some condition);
Condition should always be true
– fails otherwise
Sprinkle these throughout your
code where invariants should
hold
Get removed in release builds –
important for performance!
Use them if your code assumes
preconditions
Good use of assertions can
save countless hours of
debugging
Fail Fast!

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 7 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 10 (cont)Lec 10 (cont)

Variable/Object ReviewVariable/Object Review
An “empty” (class) variable is a
placeholder for an object
An “empty” (value type) variable
is a value
For example:
int x;
Student s;

Explicit Nullables SyntaxExplicit Nullables Syntax
? - The Question Mark is used to
denote that a variable is allowed
to contain nulls:

How to use Explicit NullablesHow to use Explicit Nullables
If there is a case where you may
need a variable or parameter to
contain nulls, write it like so:
public Student? function(Stu‐
dent? s) // s may contain null
{
Student? temp = s; // temp may
contain null
…
return temp;
}

How to use Non-NullablesHow to use Non-Nullables
Non nullables REPLACE the old
syntax:
public Student function(Student
s) // s must contain an object
{
Student temp = s; // temp must
contain an object
…
return temp; // temp cannot
contain null (compiler enforced)
}

Lec 10 (cont)Lec 10 (cont)

NullablesNullables
Summary:
Class c;
Good software practice: do not
allow variable to contain null
values
OLD way - code does not
enforce this (in fact it implies c
contains null)
NEW way - code/compiler
enforces
Therefore Class? c = null; //
allows null
Class c = new(); // does not
allow null
Enforced by compiler for a given
Project!

Lec 11Lec 11

TestingTesting
Coverage != Good Tests
Necessary but Not Sufficient
Tests should be small and
targeted
(Hence Unit Tests)
A _deep_ understanding of the
project goals is very important to
understanding the code
A full reading of all specifications
(both in the starter code and
written documentation) is
necessary!
Stress Tests show correct use
of complexity/big O
Harder to write
Harder to debug

Lec 11 (cont)Lec 11 (cont)

Information Storage and RetrievalInformation Storage and Retrieval
Saving and restoring information is
fundamental to real programs
Solutions:
Files ← Old fashion (but still useful ;^)
XML/JSON/ETC
Databases ← Modern
SQL/MySQL/Mongo/SQLite/Firebase/etc.

Saving FilesSaving Files
Need a “protocol” (i.e., what does a file
structure mean?)
XML and JSON
Notations for saving information
Machine readable
Supported by Abstractions and Libraries

Using StatementUsing Statement
Forces “cleanup”!
Operating System must close file
Try renaming a file while Visual Studio is
open with it
Advice for CS 3505
C++ → Destructor
All objects have an explicit action they
take when they are no longer
referenced/used
Translates into:
Try
Finally
(always done regardless of exception
status)
Can only be used on Disposable Objects
Should always be used on Disposable
Objects!
For Files, the finally closes the file
stream!

Lec 11 (cont)Lec 11 (cont)

XML-AttributesXML-Attributes
Attributes - inside of tag < >s
Add extra information to tag
Probably should be avoided
(most of the time*)
Examples:
<teacher name=“Jim">
<param name=“length”>
<list type=“number”>
<record id=“57”>

JSON vs. XMLJSON vs. XML
JSON newer;
XML older;
Both “do the job”
Both machine readable/parsable
Same abstractions
JSON ← Many (? most ?) Web
applications use this

JSONJSON
JSON – Representation – Object
is {}
Key Name/Value:
{ “key” : “value” }
Value can be a JSON object
{ “key” : { key1 : value, key2 :
value } }
JSON Arrays:
{ “key” : [{ key: value, … }, { …
}, …] }

ReflectionReflection
Computer language can inspect
runtime objects
Field Names
Types
Etc

SerializationSerialization
Uses Reflection to determine
Run-Time structure of object
Turns this structure into a
machine readable format
Can do this automagically

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 8 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 11 (cont)Lec 11 (cont)

XML SerializationXML Serialization
You can either use the sample
code (with small modifications)
As many programmers before
you have done
Read documentation on XML
serialization and use this
technique

Properties vs. FieldsProperties vs. Fields
Serialization works on Properties
instead of fields
Field: int name;
Property: int Name { get; set; }
Warning
Default serialization works on
public Properties.
If you want Private access, or to
change the names, you must
use some “meta-tags”

Lec 12Lec 12

Business LogicBusiness Logic
Where does the business logic
error checking go?
M, V, or C ?
Answer:
Model and Controller (mainly)
but also in the View! ←Trick
Question!
Example:
Model checks for cycles in graph
Controller does input sanitization
View only allows inputs in valid
cells; View restricts input to only
numbers (where appropriate)

Lec 12 (cont)Lec 12 (cont)

Spreadsheet ⇔ MVCSpreadsheet ⇔ MVC
Which of the following is a
Model, a View, or a Controller?
FormulaEvaluator - Model
DependencyGraph - Model
Formula - Model
Spreadsheet - Model
GUI - Controller and View

GUIGUI
Real world programs (usually
using GUIs) are driven by inputs
Unpredictable (based on human
input)
Execution is non-deterministic
You don’t know the order of the
users actions…

Design Pattern: Notifier ⇔Design Pattern: Notifier ⇔
ListenerListener
Event: any occurrence that may
require action by “someone”
else
Making sure the “right event”
gets to the Right place is challe‐
nging!
Listeners: “subscribe” to an
event
Notifier: “sends” the event
Listeners take action upon
“hearing”

Lec 12 (cont)Lec 12 (cont)

C# Event HandlingC# Event Handling
Note: Directly supported by the
language!
Define a delegate for handling
the event
All handlers match this signature
Declare an event (in the notifier)
Register a handler (in the
listener)
Trigger the event (in the notifier)

C# EventsC# Events
First, define a delegate for
handling the event:
delegate void CancellationEve‐
ntHandler();
All handlers must match this
signature!
void return – No Parameters!
Next, declare an event (in the
notifier):
class University {
event CancellationEventHandler
canceller;
// Keyword Type Field Name

Event AbstractionEvent Abstraction
The event syntax provides:
a list
a foreach loop
an assignment operator
All “hidden” (abstracted) with
simple/compact syntax!

Lec 13Lec 13

Good Software PracticesGood Software Practices
All of the techniques and
principles (e.g., DRY) that we
discuss are designed to give
developers “Best Practices” for
creating code that:
a. Contains fewer defects
b. Is more maintainable
Easier to understand
Easier to modify
Safer to modify (see (a) above)

SOLID CodeSOLID Code
Single Responsibility
Open-closed principle
Liskov substitution principle
Interface segregation principle
Dependency Inversion

(S)ingle Responsibility(S)ingle Responsibility
Each class (dare we say even
method) should have a single
responsibility
Example: the spreadsheet
model does not deal with:
The GUI
Dependency Graph
(Other than by using the
DependencyGraph library)

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 9 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 13 (cont)Lec 13 (cont)

(O)pen-Closed Principle(O)pen-Closed Principle
Best practice is NOT to modify
existing code.
Why?
Added functionality is added by
“extending”
Inheritance
Subclassing in C#
Extension (void doit (this Type,
params) { })
Example: stack class is not re-
written but helper methods, such
as “IsOnTop”, are added

(L)iskov Substitution Principle(L)iskov Substitution Principle
Variables in a program of a give
(Parent) type should be replac‐
eable with instances of their
subtypes without altering the
correctness of the code.
Example: The need for an
Abstract Spreadsheet can be
fulfilled with any students
Spreadsheet implementation

(I)nterface Segregation Principle(I)nterface Segregation Principle
Many small interface specifica‐
tions are better than one large
one
“Child” classes can implement
multiple interfaces as necessary
Not a good example from
Spreadsheet
Example: IDisposable
Only one method – Dispose

Lec 13 (cont)Lec 13 (cont)

(D)ependency Inversion(D)ependency Inversion
PrinciplePrinciple
Classes should depend upon
Abstraction not Concreteness.
Where possible, variables/fields
should be Interfaces or Abstract
Classes rather than a concreted
class.
Example: Spreadsheet GUI
should have an Abstract Spread‐
sheet member variable, not a
Spreadsheet.
This allows flexibility in
expanding the project in the
future
class GUI
{
private Spreadsheet Spread‐
sheet; // WRONG
private AbstractSpreadsheet
Spreadsheet; // CORRECT

How do you"start" becoming aHow do you"start" becoming a
better software engineer?better software engineer?
Q: How do we get all of this
“stuff” into our program.
Suggestion:
Concentrate on the S (single
responsibility)
Remember the O (open/closed)
when using other code
Try to remember to define (and
use) Interfaces
Upon modifying (adding features
to) the code, refactor to increase
SOLIDness
As you grow more skilled,
consider SOLID from the start

Lec 14Lec 14

Software Practice and ParallelSoftware Practice and Parallel
Does Parallel make code easier
to understand?
Does Parallel make code have
fewer defects?
NO!
It might inspire you to better
document, but it is intrinsically
more complicated than single
thread execution
So why do we do it?
Answer: efficiency gains out
weight complexity
We must be even more diligent
in our naming, documentation,
testing, etc., when writing
parallel code

Moore's LawMoore's Law
•Gordon Moore, 1975:
Transistor density will double
every 2 years
What does this mean?
• It does not mean: processors
get 2x faster every 2 years

Dennard ScalingDennard Scaling
Robert Dennard, 1974: As
transistors shrink, power-density
remains constant
•What does this mean?

Moores + DennardMoores + Dennard
•What does this NOT mean?
• That computers automatically
get faster
•What does this mean?
• In part, it means we’re getting
lots of cores
•We have to figure out how to
use those cores!

Lec 14 (cont)Lec 14 (cont)

Parallel ComputingParallel Computing
•We told the algorithm how to
divide the work
•And more importantly, how to
combine the results
•Writing code without thinking
about parallelism will not
(usually) produce a parallel
solution

ThreadThread
•Thread: a single sequential
subprocess
• Almost like its own program
•Multi-threading is the ability of a
computer to execute multiple
threads concurrently

Non-BlockingNon-Blocking
•thread.Start() is a non-blocking
statement
• It returns right away
• Even though the other thread
is still running
•thread.Join() is blocking
• Calling thread waits until
thread finishes
• What defines when thread is
finished?
• When the work function returns

TimingTiming
•You can not make any assump‐
tions about how long some
computing operation will take
•With concurrency, there is no
guarantee about the order in
which events occur

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 10 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 14 (cont)Lec 14 (cont)

ConcurrentConcurrent
•Concurrent
• Multiple tasks running
• Thread can be interrupted,
preempted at any time
•Achieved by either:
• OS rapidly switching threads/p‐
rocesses
• Two threads/processes
executing simultaneously
•Concurrency via Context
Switching

ParallelParallel
•Parallel (simultaneous)
• Actually at the same time
(same cycle)
• Parallelism is concurrency
• Usually results in performance
gains
•Concurrency is not (necessarily)
parallelism

Multi-ThreadingMulti-Threading
•Multithreading does not (neces‐
sarily) mean parallel
• But it does mean concurrent
•The issues that arise with
multithreaded programming are
due to concurrency, not parall‐
elism

SMTSMT
•Simultaneous multithreading
•The ability of a core to execute
multiple threads simultaneously
•Intel calls it “hyperthreading”
• (a little more to it than this)

Lec 14 (cont)Lec 14 (cont)

C# FormC# Form
•How does a C# Form control
program flow?
static void Main()
{
...
Application.Run(new Form1());
}
public Form1()
{
InitializeComponent();
}

Message LoopMessage Loop
•A Form is an “application
message loop”
•System creates a new thread to
run the loop
•Thread essentially runs this
code:
while(m = NextMessage())
{
HandleMessage(m);
}
•Messages are placed in to the
thread’s “queue” by the OS
•When the mouse is moved
•When the mouse is clicked
•When a key is pressed
•When a window is resized
•etc…
•Most of the time, handling the
message is just invoking event
handlers

Handeling MessagesHandeling Messages
while(m = NextMessage())
{
HandleMessage(m);
}
•If handling the message is
expensive, then other messages
get stalled
•GUI becomes unresponsive

Lec 15Lec 15

Modals(Pop-Ups)Modals(Pop-Ups)
async void doit() { //async bool
DisplayAlert(…)
overwrite = await DisplayAlert(
"Warning", // Title
"Spreadsheet changed, do you
want to continue?", // Message
"Yes", // True choice
"No"); // False Choice

PartialsPartials
// file: YourCode.cs
class MainPage XML →
MauiCode.cs
{ partial class MainPage
…
}

Good Software Practices lead toGood Software Practices lead to
Better Architecture � FDMM
MVC, Client Server, Event
Driven
Use of “tried and tested”
libraries
SOLID → FDMM
Smaller “units” (multiple single
responsibility functions)
Documentation � FDMM
Versioning � FDMM
Testing � FDMM
Design Patterns → FDMM
FDMM – Fewer Defects, More
Maintainable

Lec 15 (cont)Lec 15 (cont)

Open/Closed ExampleOpen/Closed Example
Modifying the code in _working_
software can lead to defects
New software needs more
functionality.
Avenues of “Openness”
Extend
Inherit
Open for extension/Closed for
modification

Code AlignmentCode Alignment
Makes code:
Easier to Read
Easier to spot “one offs” or “copy
paste” mistakes
float thousands = 1000;
float millions = 1000000;
float billions = 100000000;
Even Better: Use number
underscores

Threads vs. TasksThreads vs. Tasks
You may read about/hear about
“Tasks”
Both allow processes to run in
parallel.
Task is a higher level abstra‐
ction with additional functionality:
Can return a result
Can be cancelled
Can use Async and Await
keywords*
Can use the “Thread Pool”
For our current purposes, there
is little difference.

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 11 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 15 (cont)Lec 15 (cont)

Shared Data is ProblematicShared Data is Problematic
Parallelism
When possible do work on
separate data
When NOT use locking
We’ll talk more about this later
Slows down the process

Key MethodsKey Methods
Constructor:
worker1 = new Thread(() =>
function());
Start – actually begin the work
worker1.Start()
Join – wait for that work to be
done
worker1.Join()

Parallel VocabParallel Vocab
Thread
A separate unit of execution
(assigned a method/function)
Race Condition
Two (or more) threads have
access to same data at the same
time
Lock
Protects a critical region of code
(which almost always should
contain a shared resource, e.g.,
a common variable/data
structure)
Deadlock
Two+ threads are waiting for
each other in order to continue

Lec 15 (cont)Lec 15 (cont)

Deadlock ExampleDeadlock Example
Note: You won’t get Deadlock in
Spreadsheet GUI
Need at least two locks
Only shared resource might be
GUI widgets (e.g., buttons)
Should “turn these off” when
doing a long computation
Protected by Backgroundworker
Semantics and/or Invoke

Characteristics of GSPCharacteristics of GSP
Defects (bugs) Reduction
Testing, Architecture, SOLID
Maintainability
Understandable/Readable
Testing � Regression
resistant

Lec 16Lec 16

Software Practice - ProblemSoftware Practice - Problem
Solving(Coding)Solving(Coding)
Problem: I want to choose where
to save a file (spreadsheet) in
my MAUI application
Solution:
Software Practice in practice
Step 1: Google - choose good
keywords
Step 2: Stackoverflow - verify it
“looks legit”
Step 3: Nuget and Troubleshoot

Lec 16 (cont)Lec 16 (cont)

NetworksNetworks
We will cover the introductory
concepts about program to
program communication over a
network
For a deeper understanding,
take CS 4480 - Networking

Two way CommunicationTwo way Communication
Address and recipient
Address and sender

Identification InformationIdentification Information
Real World (i.e., Apartment)
Address (# street state zip),
Mailbox/Apartment (#)
Computer
URL: e.g., www.cs.utah.edu
(human readable)
Really IP Address: e.g.,
155.98.65.24 (machine
readable)
Port: e.g., 80

Architecture: Architecture: Client Client ⬄ Server Server
Client wants to do some
“work”/“play”
Server controls functionality
Client usually shows the GUI
Server usually manages the
Model/Data

Lec 16 (cont)Lec 16 (cont)

DNS -Domain Name SystemDNS -Domain Name System
How do you know “where” Jess
lives?
Need an Address?
Could ask operator �
“Where is the Jess' House?”
I suppose you could ask
Google…
How do you know “where”
cs.utah.edu lives?
DNS � Domain Name
System
Provides “IP Address”
Need a computer address:
Where is:
cs.utah.edu
Aside: how do you know where
DNS lives?
Google DNS:
Configure your network settings
to use the IP addresses
8.8.8.8 and 8.8.4.4 as your DNS
servers.
If you decide to try Google
Public DNS, your client
programs will perform all DNS
lookups using Google Public
DNS.

IP Version 6 and local nets: IP Version 6 and local nets: TooToo
many computers…many computers…
Note IPv4 vs. IPv6 (number of
addresses)
Think license plates in Utah vs.
California
Local network: 192.0.0.1
Most of your home routers

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 12 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cs.utah.edu
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 16 (cont)Lec 16 (cont)

Ports -“MAIL BOXES”Ports -“MAIL BOXES”
ASSOCIATED WITH SPECIFICASSOCIATED WITH SPECIFIC
PROGRAMSPROGRAMS
Once at the "building", distribute
to the recipient

Client Client ⬄ Server Communications Server Communications
Needs:
The address of the server
machine
Initial port to talk to
A unique port for future
communication
The Protocol(s)!

Can you have multiple Clients Can you have multiple Clients ⬄
with a single Server?with a single Server?
see stackoverflow?

Initial Port vs. Continuing PortInitial Port vs. Continuing Port
For Query/Response programs
(e.g., a web server):
the server will use a specific low
port that is “known” so anyone
can make an initial connection
i.e., 80
Ongoing connections will be
moved to a different (high) port
number
So that new clients can talk to
server at the same time

Lec 16 (cont)Lec 16 (cont)

Ports -1 Ports -1
“Mailbox Numbers” for the
computer
Unique to for each program
If you try to “open” a port that is
already in use you will get an
error
Note: this could happen if you
try to run/debug two versions of
the same program at the same
time
Numbers
Range: 0 - 64k
taken over -> used so much
they have become defaults…

Ports -2Ports -2
Who decides number?
Some programs have official
ports
Other programs have “taken”
over ports
Some ports screened/blocked
by firewalls!
Especially low ports under 1000

Sockets -OPENING CONNEC‐Sockets -OPENING CONNEC‐
TIONS BETWEEN CLIENTSTIONS BETWEEN CLIENTS
AND SERVERAND SERVER
Socket � Unique Channel
between Sender and Receiver
Client asks the Server for
connection.
A Socket is defined!

Lec 16 (cont)Lec 16 (cont)

SocketSocket
An identifier representing a
particular point to point
communication connection
between two pieces of software
My IP ADDRESS
Their IP ADDRESS
My Port Number
Their Port Number
Combined into a single unique
communication channel

Network ProtocolsNetwork Protocols
Agreed order and format of data
for communication
What protocols do we have in
this classroom?
Hand raise � Professor Calls
Upon � Acknowledged
person answers
Professor says Answer Clicker
Question � Students input
data

XML Commenting ProtocolsXML Commenting Protocols
How do we define comments
about parameters?
<param name=”abc”> info </p‐
aram>

IP -Internet ProtocolIP -Internet Protocol
Responsible for sending packets
of information from host to host
Hand-wave Hand-wave Hand-
wave
(or Abstraction/Separation of
concerns)
The internet and C#’s usage of it
just works!

Lec 16 (cont)Lec 16 (cont)

TCP -Transmission ControlTCP -Transmission Control
ProtocolProtocol
Runs on top of IP (Internet
Protocol)
One to One Reliable Commun‐
ication
Data will arrive
Verified Ordering
Verified Uncorrupted
Does not verify when data
arrives or how much arrives at a
given time!
C# libraries do all the work for
you
Take the Networking course! CS
4480

UDP -User Datagram ProtocolUDP -User Datagram Protocol
Alternative to TCP
No Handshaking – no persistent
connection
No guarantee of
Delivery
Ordering
Duplication Protection
Why would we use this?
Faster – less overhead

Basic Network CommunicationBasic Network Communication
Facts:Facts:
Happen at the BYTE level!!!!
Your program must
Translate useful data into bytes
and
Translate bytes into useful data
(e.g., strings, objects, etc)
TCP does not guarantee
When Information Goes Out
When Information Arrives
How much information is sent at
any one time…
TCP does guarantee
order and validity

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 13 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

3500 Midterm Cheat Sheet
by _allisonwalker via cheatography.com/181463/cs/37727/

Lec 16 (cont)Lec 16 (cont)

Stacking ProtocolsStacking Protocols
Web browsing looks something
like this
HTTP
TCP
IP

Need our own ProtocolNeed our own Protocol
If you can’t guarantee when or
how much data the program
receives, how do you know
when you have a full message:
jim is great… ☺
…ly overrated ☹
Answer: define a protocol
For example: the character ‘.’ will
mean we are done:
jim is great.
Problems?
Other Suggestions?
How about writing the number of
characters as the first byte?

Communication ExampleCommunication Example
Question:
Have you written a Program to
Communicate with another
Program?
Answer:
The Spreadsheet communicates
with “another program” (itself)
via saving data

What the server's connectionWhat the server's connection
thread doesthread does
A SERVER DOES TWO
THINGS:
“NETWORK STUFF” (E.G.,
HANDLE MULTIPLE CLIENT
REQUESTS AND
CONNECTIONS)
“APPLICATION STUFF” (E.G.,
MANAGES A GAME)

Lec 16 (cont)Lec 16 (cont)

TCP Handling in C#TCP Handling in C#
A TCPListener object is at the
heart of the server.
Listens on a specific port for
incoming connection requests.
TcpListener
BeginAcceptSocket – Wait for
request to arrive
EndAcceptSocket - Obtains the
Socket.

Lec 17Lec 17

GSP OverviewGSP Overview
GSPs refer to tools, techniques,
processes, etc., that are used to
ensure our code is:
Easier to maintain
Contains fewer defects
Examples include:
Versioning (git/github/github
projects)
Design Patterns
System Architecture decisions
(e.g., MVC)
SOLID, DRY
Diagramming/UML
Testing
Unit Testing, Integration Testing,
open/closed-box testing, C# test
syntax, e.g., TestClass()]…)

Lec 17 (cont)Lec 17 (cont)

Chat Client ExamplesChat Client Examples
Some Key Issues:
What is a stringbuilder (as
opposed to a string)? {nl}}Why
do we use it?
What is a byte[] (as opposed to
a string)?
Why do we use it?
What are character encodings
(UTF8)?
Can we convert between these?

More Key IssuesMore Key Issues
Watch for Race Conditions in
your code
What values can multiple
threads access?
E.g., Client array
Removing items from a shared
list
Network Realities
How much data comes at once?
Protocols: “what is a message?”
127.0.0.1 (localhost)

Simple Chat Client/Server KeySimple Chat Client/Server Key
MethodsMethods
Key Methods
BeginAcceptSocket
Wait for someone to talk to you
BeginConnect
(Ask to) Start talking to someone
else
BeginSend, EndSend
Send data
BeginReceive, EndReceive
Receive data

Simple Chat Client/Server KeySimple Chat Client/Server Key
ConceptsConcepts
Key Concepts
“Event” callbacks
Older vs. Newer
Await Async

Lec 17 (cont)Lec 17 (cont)

Continued Key IssuesContinued Key Issues
How do you convert from an
“object type” to an “actual”
Type?
Why is IAsyncResult.AsyncState
not typed….
What is meant by an Event
(Receive Event) loop?

New Version of CodeNew Version of Code
Async - tells the system that the
code may “pause” and “return”
later
Allows other threads to execute
Await - tells the system to “wait”
here (pause thread) until an
“event” happens
Let’s look at the tcpclient version
of the code.

By _allisonwalker_allisonwalker

cheatography.com/allisonwalker/

Not published yet.
Last updated 16th March, 2023.
Page 14 of 14.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/allisonwalker/
http://www.cheatography.com/allisonwalker/cheat-sheets/3500-midterm
http://www.cheatography.com/allisonwalker/
http://crosswordcheats.com

	3500 Midterm Cheat Sheet - Page 1
	Lec 1
	Lec 3
	Lec 2

	3500 Midterm Cheat Sheet - Page 2
	Lec 4

	3500 Midterm Cheat Sheet - Page 3
	Lec 6
	Lec 5

	3500 Midterm Cheat Sheet - Page 4
	Lec 8
	Lec 7

	3500 Midterm Cheat Sheet - Page 5
	3500 Midterm Cheat Sheet - Page 6
	Lec 10
	Lec 9

	3500 Midterm Cheat Sheet - Page 7
	3500 Midterm Cheat Sheet - Page 8
	Lec 11

	3500 Midterm Cheat Sheet - Page 9
	Lec 13
	Lec 12

	3500 Midterm Cheat Sheet - Page 10
	Lec 14

	3500 Midterm Cheat Sheet - Page 11
	Lec 15

	3500 Midterm Cheat Sheet - Page 12
	Lec 16

	3500 Midterm Cheat Sheet - Page 13
	3500 Midterm Cheat Sheet - Page 14
	Lec 17

