
C# Unit-Tests - Basics Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20379/

 Arrange - Act - Assert

public void MyTest() {
 ​ // Arrange - Only setup code needed by the act
step

 ​ // Act - Only the action(s) under test

 ​ // Assert - Verifi​cation of the excepted
behavior
}

Tip: If any of these parts are greatly bigger than the others, look for
refact​oring your tests.

 Test Class Organi​zation

class SubjectTests {

 ​ // fields
 ​ int callCount = 0;
 ​ // help methods
 ​ ​private Subject MakeSu​bject() =>
 ​ ​ ​ new Subject();

 ​ // test methods
 ​ ​public void Test1() { }
 ​ ​public void Test2() { }
 ​ ​public void Test3() { }
}

This is just a conven​tion. Don't leave help methods and field
scattered all around the test methods.

 Solitary vs Sociable

Solitary
Type of test that tests a unit without the involv​ement of other units.
Mocks all depend​encies of the subject under test.

Sociable
Type of test that uses multiple units to verify a given behavior.
Mock only hard to manage depend​encies. (e.g. external resources)

source: Working Effect​ively with Unit Tests by Jay Fields

 Unit-Test

We have control over all it's parts.

Runs in any order.

Doesn't depend on another test.

Doesn't produce side-e​ffects.

Asserts observable behavior.

Tip: if any of these is false then it's not a unit-test.

 Test - What's your name?

// Convention #1
public void Creati​ng_​a_u​ser​_st​ore​s_i​t_i​‐
n_t​he_​dat​abase() { ... }
public void Creati​ng_​a_u​ser​_wi​tho​ut_​nam​‐
e_t​hro​ws_​exc​ept​ion() { ... }

// Convention #2
public void Create​Use​r_S​tor​esI​nDa​tab​ase() {
... }
public void Create​Use​r_W​ith​out​Nam​e_T​hro​‐
wsE​xce​ption() { ... }

// Convention #3
public void Given_​use​r_w​hen​_cr​eat​ing​_th​‐
en_​its​_st​ore​d_i​n_d​ata​base() { ... }
public void Given_​use​r_w​hen​_ha​s_n​o_n​ame​‐
th​en​thr​ows​_ex​cep​tion() { ... }

The name of the test should have 3 parts:
 ​ - The behavior under test;
 ​ - The constr​aints;
 ​ - The expected behavior.

 Actions on Loops

public void Test1() {
 ​ ​for(var x in listOfInt) {
 ​ ​ ​ ​Ass​ert.Th​at(​Get​Val​ue(x), Is.True));
 ​ }
}

Tip: Multiple asserts and action taken within a loop on the same test
makes us ignore some cases in case of a failure.

By Sérgio Ferreira
(AlienEngineer)

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-basics
http://www.cheatography.com/alienengineer/
https://readable.com

C# Unit-Tests - Basics Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20379/

 Avoid some Expect​ations

// Thats how it's done
mock.V​eri​fy(...)

// If possible use specific value, is int.Ma​xValue a valid expectation?
Assert.Th​at(x, Is.Gre​ate​rTh​an(10))

// Might be null
var result = GetObj​ect();
Assert.Th​at(​res​ult.Pr​operty, Is.True))

// Might throw exception somewhere other than action
[Expec​tEx​cep​tion()]

// Look for content not types
Assert.Is​Ins​tan​ceO​fTy​pe(​result, typeof​(So​meD​at
a​Mod​el));

Avoid != Never do it

 Don't ignore the signs!

Sign Outcome

A big arrange section: large
dto, many parameters or many
mocks.

Subject under test might be doing
to much.

Tests to data model object
(dto).

Reveals missing tests. DTOs will
get their coverage from usage.

Tests to Except​ions. Reveals missing tests. Exceptions
will be tested by their usage.

Big test file Can indicate duplic​ation or the
subject under test is doing to
much.

Json, xml, etc Formatted strings of any kind
reveal coupling. Except tests to
format​ters.

Big file : Any file greater than 500 lines
Big section : More than 10 lines.
Many parameters : More than 3.
Many Mocks : More than 3.
Large dto: More than 10 proper​ties.

 Parame​terized (NUnit)

[Test]
public void Test1(​[Va​lues(1, 2, 3)] int value) {
}

 Parame​terized (xUnit)

[Theory]
[Inlin​eDa​ta(1)]
[Inlin​eDa​ta(2)]
[Inlin​eDa​ta(3)]
public void Test1(int value) { }

 Parame​terized (MS Tests v2)

[DataTestMethod]
[DataR​ow(1)]
[DataR​ow(2)]
[DataR​ow(3)]
public void Test1(int value) { }

 Isolate - Shared data

static int value = 0;
public void Test1() {
 ​ ​value = 10;
 ​ ​doS​ome​thi​ng(​value);
}
public void Test2() {
 ​ ​doS​ome​thi​ng(​value);
}

Static mutable state will eventually kill one or more tests.

 Isolation - Thread safe tests

static object lockObject = new object();
public void Test1() {
 ​ ​loc​k(l​ock​Object) {
 ​ ​ ​ // thread safe code
 ​ }
}
public void Test2() {
 ​ ​loc​k(l​ock​Object) {
 ​ ​ ​ // thread safe code
 ​ }
}

Avoid this! Dealing with thread safety in tests adds another layer of
comple​xity.

By Sérgio Ferreira
(AlienEngineer)

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-basics
http://www.cheatography.com/alienengineer/
https://readable.com

	C# Unit-Tests - Basics Cheat Sheet - Page 1
	 Arrange - Act - Assert
	 Unit-Test
	 Test - What's your name?
	 Test Class Organi­zation
	 Solitary vs Sociable
	 Actions on Loops

	C# Unit-Tests - Basics Cheat Sheet - Page 2
	 Avoid some Expect­ations
	 Parame­terized (xUnit)
	 Parame­terized (MS Tests v2)
	 Isolate - Shared data
	 Don't ignore the signs!
	 Isolation - Thread safe tests
	 Parame­terized (NUnit)

