Cheatography

i Arrange - Act - Assert

public void MyTest () {

// Arrange - Only setup code needed by the act
step

// Act - Only the action(s) under test
// Assert - Verifi cation of the excepted

behavior

}

Tip: If any of these parts are greatly bigger than the others, look for

refactoring your tests.

»# Test Class Organization

class SubjectTests {

// fields

int callCount = 0;

// help methods

private Subject MakeSu bject () =>

new Subject();

// test methods

public void Testl() { }
public void Test2() { }
public void Test3() { }

}

This is just a convention. Don't leave help methods and field
scattered all around the test methods.

@ Solitary vs Sociable

Solitary
Type of test that tests a unit without the involvement of other units.
Mocks all dependencies of the subject under test.

Sociable
Type of test that uses multiple units to verify a given behavior.
Mock only hard to manage dependencies. (e.g. external resources)

source: Working Effectively with Unit Tests by Jay Fields

By Sérgio Ferreira
(AlienEngineer)
Page 1 of 2.

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.

C# Unit-Tests - Basics Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20379/

? Unit-Test

We have control over all it's parts.
Runs in any order.

Doesn't depend on another test.
Doesn't produce side-effects.

Asserts observable behavior.

Tip: if any of these is false then it's not a unit-test.

O Test - What's your name?

// Convention #1

public void Creati ng a u ser st ore s i t i -

n t he dat abase() { ... }

public void Creati ng_ a u ser wi tho ut nam -

e t hro ws_ exc ept ion() { ... }

// Convention #2

public void Create Use r S tor esI nDa tab ase() {
}

public void Create Use r W ith out Nam e T hro -

wsE xce ption() { ... }

// Convention #3

public void Given wuse r w hen cr eat ing _th -

en its st ore d i n d ata base() { ... }

public void Given wuse r w hen ha s n o n ame -

_th en thr ows ex cep tion() { ... }

The name of the test should have 3 parts:
- The behavior under test;
- The constraints;

- The expected behavior.

% Actions on Loops

public void Testl() {

for(var x in 1listOfInt) {

Ass ert.Th at(Get Val ue(x), Is.True));

Tip: Multiple asserts and action taken within a loop on the same test
makes us ignore some cases in case of a failure.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-basics
http://www.cheatography.com/alienengineer/
http://crosswordcheats.com

Cheatography

% Avoid some Expectations

/I Thats how it's done

mock.V eri fy(...)

/I If possible use specific value, is int.MaxValue a valid expectation?

Assert.Th at(x, Is.Gre ate rTh an(10))

/I Might be null
var result = GetObj ect();

Assert.Th at(res ult.Pr operty, Is.True))

/I Might throw exception somewhere other than action
[Expec tEx cep tion()

/I Look for content not types

Assert.Is Ins tan ceO fTy pe(result, typeof

a Mod el));

Avoid != Never do it

@ Don't ignore the signs!

Sign Outcome

A big arrange section: large Subject under test might be doing
dto, many parameters or many to much.

mocks.

Tests to data model object
(dto).

Reveals missing tests. DTOs will
get their coverage from usage.

Tests to Exceptions. Reveals missing tests. Exceptions

will be tested by their usage.

Big test file Can indicate duplication or the
subject under test is doing to

much.

Json, xml, etc Formatted strings of any kind
reveal coupling. Except tests fo

formatters.

Big file : Any file greater than 500 lines
Big section : More than 10 lines.
Many parameters : More than 3.
Many Mocks : More than 3.

Large dto: More than 10 properties.

o Parameterized (NUnit)

[Test]
public void Testl (
}

[Va lues (1, 2, 3)1]

int value) {

By Sérgio Ferreira
(AlienEngineer)
Page 2 of 2.

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.

C# Unit-Tests - Basics Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20379/

o Parameterized (xUnit)

[Theory]
[Inlin eDa ta(l)]
[Inlin eDa ta(2)]
[Inlin eDa ta(3)]

public void Testl (int value) { }

o Parameterized (MS Tests v2)

[DataTestMethod]
[DataR ow (1)]
[DataR ow(2)]
[DataR ow(3)]

(So meD at

public void Testl (int value) { }

¥ |solate - Shared data

static int value = 0;
public void Testl() {
value = 10;
doS ome thi ng(value);
}
public void Test2 () {

doS ome thi ng(value);

}

Static mutable state will eventually kill one or more tests.

% lsolation - Thread safe tests

static object lockObject = new object();
public void Testl () {
loc k(1 ock Object) {

// thread safe code

}
public void Test2 () {
loc k(1 ock Object) {
// thread safe code

}

Avoid this! Dealing with thread safety in tests adds another layer of
complexity.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-basics
http://www.cheatography.com/alienengineer/
http://crosswordcheats.com

	C# Unit-Tests - Basics Cheat Sheet - Page 1
	 Arrange - Act - Assert
	 Unit-Test
	 Test - What's your name?
	 Test Class Organi­zation
	 Solitary vs Sociable
	 Actions on Loops

	C# Unit-Tests - Basics Cheat Sheet - Page 2
	 Avoid some Expect­ations
	 Parame­terized (xUnit)
	 Parame­terized (MS Tests v2)
	 Isolate - Shared data
	 Don't ignore the signs!
	 Isolation - Thread safe tests
	 Parame­terized (NUnit)

