
C# Unit-Tests - Basics Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20379/

 Arrange - Act - Assert

public void MyTest() {

 // Arrange - Only setup code needed by the act
step

 // Act - Only the action(s) under test

 // Assert - Verifi cation of the excepted behavior
}

Tip: If any of these parts are greatly bigger than the others, look for
refact oring your tests.

 Test Class Organi zation

class SubjectTests {

 // fields
 int callCount = 0;
 // help methods
 private Subject MakeSu bject() =>
 new Subject();

 // test methods
 public void Test1() { }
 public void Test2() { }
 public void Test3() { }
}

This is just a conven tion. Don't leave help methods and field
scattered all around the test methods.

 Solitary vs Sociable

Soli tary
Type of test that tests a unit without the involv ement of other units.
Mocks all depend encies of the subject under test.

Soci able
Type of test that uses multiple units to verify a given behavior.
Mock only hard to manage depend encies. (e.g. external resour ces)

source: Working Effect ively with Unit Tests by Jay Fields

 Unit-Test

We have control over all it's parts.

Runs in any order.

Doesn't depend on another test.

Doesn't produce side-e ffects.

Asserts observable behavior.

Tip: if any of these is false then it's not a unit-test.

 Test - What's your name?

// Convention #1

public void Creati ng_ a_u ser _st ore s_i t_i n_t he_ dat ‐
abase() { ... }

public void Creati ng_ a_u ser _wi tho ut_ nam e_t hro ws_ ‐
exc ept ion() { ... }

// Convention #2

public void Create Use r_S tor esI nDa tab ase() { ... }
public void Create Use r_W ith out Nam e_T hro wsE xce ‐
ption() { ... }

// Convention #3

public void Given_ use r_w hen _cr eat ing _th en_ its _st ‐
ore d_i n_d ata base() { ... }
public void Given_ use r_w hen _ha s_n o_n ame _th en_ thr ‐
ows _ex cep tion() { ... }

The name of the test should have 3 parts:
 - The behavior under test;
 - The constr aints;
 - The expected behavior.

 Actions on Loops

public void Test1() {

 for(var x in listOfInt) {
 Ass ert.Th at(Get Val ue(x), Is.True));
 }
}

Tip: Multiple asserts and action taken within a loop on the same test
makes us ignore some cases in case of a failure.

By Sérgio Ferreira
(AlienEngineer)

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-basics
http://www.cheatography.com/alienengineer/
https://readable.com

C# Unit-Tests - Basics Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20379/

 Avoid some Expect ations

// Thats how it's done
mock.Verify(...)

// If possible use specific value, is int.Ma xValue a valid expectation?
Assert.That(x, Is.Gre ate rTh an(10))

// Might be null
var result = GetObject();

Assert.That(result.Property, Is.True))

// Might throw exception somewhere other than action
[ExpectException()]

// Look for content not types
Asser t.I sIn sta nce OfT ype (re sult, typeof (So meD ata ‐
Mod el));

Avoid != Never do it

 Don't ignore the signs!

Sign Outc ome

A big arrange section: large
dto, many parameters or many
mocks.

Subject under test might be doing
to much.

Tests to data model object
(dto).

Reveals missing tests. DTOs will
get their coverage from usage.

Tests to Except ions. Reveals missing tests. Exceptions
will be tested by their usage.

Big test file Can indicate duplic ation or the
subject under test is doing to
much.

Json, xml, etc Formatted strings of any kind
reveal coupling. Except tests to
format ters.

Big file : Any file greater than 500 lines
Big section : More than 10 lines.
Many parame ters : More than 3.
Many Mocks : More than 3.
Large dto: More than 10 proper ties.

 Parame terized (NUnit)

[Test]

public void Test1([Va lues(1, 2, 3)] int value) { }

 Parame terized (xUnit)

[Theory]

[Inlin eDa ta(1)]
[Inlin eDa ta(2)]
[Inlin eDa ta(3)]
public void Test1(int value) { }

 Parame terized (MS Tests v2)

[DataTestMethod]

[DataR ow(1)]
[DataR ow(2)]
[DataR ow(3)]
public void Test1(int value) { }

 Isolate - Shared data

static int value = 0;

public void Test1() {

 value = 10;
 doS ome thi ng(value);
}

public void Test2() {

 doS ome thi ng(value);
}

Static mutable state will eventually kill one or more tests.

 Isolation - Thread safe tests

static object lockObject = new object();

public void Test1() {

 loc k(l ock Object) {
 // thread safe code
 }
}

public void Test2() {

 loc k(l ock Object) {
 // thread safe code
 }
}

Avoid this! Dealing with thread safety in tests adds another layer of
comple xity.

By Sérgio Ferreira
(AlienEngineer)

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-basics
http://www.cheatography.com/alienengineer/
https://readable.com

	C# Unit-Tests - Basics Cheat Sheet - Page 1
	 Arrange - Act - Assert
	 Unit-Test
	 Test - What's your name?
	 Test Class Organization
	 Solitary vs Sociable
	 Actions on Loops

	C# Unit-Tests - Basics Cheat Sheet - Page 2
	 Avoid some Expectations
	 Parameterized (xUnit)
	 Parameterized (MS Tests v2)
	 Isolate - Shared data
	 Don't ignore the signs!
	 Isolation - Thread safe tests
	 Parameterized (NUnit)

