Cheatography

% Implementation testing

public void Test () {
// Arrange
var mock = new Mock<IActionInterface>();

var subject = new MySubject (mock.Object) ;

// Act

subject.DoSomething () ;

// Assert
mock.Verify(e => e.Store(It.IsAny<int>()),
Times.Once) ;

}

- Locks tests with the dependency:

- The test method is aware of |Actioninterface.

- Creates duplicated code.
- Changes to MySubject constructor forces changes throughout all
the tests.

O Verify vs Callbacks

// If one of these equality comparisons fail we
just know that MyAction wasn't called with those
arguments.
mock.Verify(e => e.MyAction (
It.Is<ParameterType> (param =>
param.Fieldl == "some value" &&
param.Field2 == 3),
Times.Once) ;
// Instead:
ParameterType calledArgs = null;
mock
.Setup (e => e.MyAction (It.IsAny<ParameterType>
0))
.Callback<ParameterType> (param => calledArgs =
param) ;
Assert.That (calledArgs, Is.Not.Null);
Assert.That (calledArgs.Fieldl, Is.EqualTo ("some
value")) ;

Assert.That (calledArgs.Field2, Is.EqualTo(3));

Tip: Avoid stating in your tests how things were done, instead strive
to describe what happened. Observable Behavior

By Sérgio Ferreira
(AlienEngineer)
Page 1 of 2.

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.

C# Unit-Tests - Advanced Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20391/

»& Behavior testing

private int _someVariable;

private MySubject MakeSubject ()
{

var mock = new Mock<IActionInterface> () ;
mock.Setup (e => e.Action (It.IsAny<int>()))

.Callback<Int> (s => _someVariable= sg) ;

return new MySubject (mock.Object) ;

private bool WasStored(int value) =>
_someVariable == value;
[Test]
public void SomeTestMethod ()
{
// Arrange
var subject = MakeSubject () ;
// Act

subject.DoSomething () ;

// Assert
Assert.True (WasStored(5)) ;
}

- Changes to dependencies are done in one place only.
- Focuses on Behavior not implementation.

% Dependencies - Common missed tests

What happens when the dependency..

= throws exception?
= returns null?

= returns wrong format? (e.g. expected json)

Tip: Testing is about making sure we have answers to questions.
Testing is done when we don't have doubts, therefore no more
questions.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-advanced
http://www.cheatography.com/alienengineer/
https://readable.com

C# Unit-Tests - Advanced Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20391/

Cheatography

internal abstract class WebApiTests { // Hide file access through Stream Factory
private WebApplicationFactory<Startup> _factory; public interface IStreamFactory
{
protected WebApiTests () => Stream OpenStream() ;
_factory = new WebApplicationFactory<Startup> void CloseStream(Stream stream) ;

() }
// On test file

protected HttpClient GetClient () => private IStreamFactory MakeStreamStorage ()
_factory.CreateClient () ; {
} // Create one isolated MemoryStream per test run!
class MyApiControllerTests : WebApiTests { _stream = new MemoryStream() ;
public async Task requestTest () { var mock = new Mock<IStreamFactory> () ;
// Arrange mock.Setup (s => s.OpenStream()) .Returns (_st—
var client = GetClient () ; ream) ;

return mock.Object;

// Act }
var response = await
void Test() {
// Assert // slow & can fail
response.EnsureSuccessStatusCode () ; var data = File.ReadAllText (@"Data.json") ;
var data = await // slow & can fail
response.Content.ReadAsAsync<Model> () ; var x = JsonConvert.DeserializeObject<MyModel> (—
data) ;
// Assert data ... // None of the above lines have anything to do
} with the test. It's all about Arrange section.
! }
using Microsoft.AspNetCore.Mvc.Testing library for auto mocking Tip: If you feel the need to do this, probably your subject under test is
out the http layer. doing to much. See Don't ignore the signs!
By Sérgio Ferreira Published 28th August, 2019. Sponsored by Readable.com
(AlienEngineer) Last updated 3rd September, 2019. Measure your website readability!
Page 2 of 2. https://readable.com

cheatography.com/alienengineer/


http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-advanced
http://www.cheatography.com/alienengineer/
https://readable.com

	C# Unit-Tests - Advanced Cheat Sheet - Page 1
	 Implem­ent­ation testing
	 Behavior testing
	 Verify vs Callbacks
	 Depend­encies - Common missed tests

	C# Unit-Tests - Advanced Cheat Sheet - Page 2
	 Web Apis
	 Files
	 Test arrange with files


