Cheatography

% Implementation testing

public void Test () {
// Arrange
var mock = new Mock<IActionInterface>();

var subject = new MySubject (mock.Object) ;

// Act

subject.DoSomething () ;

// Assert
mock.Verify(e => e.Store(It.IsAny<int>()),
Times.Once) ;

}

- Locks tests with the dependency:

- The test method is aware of |Actioninterface.

- Creates duplicated code.
- Changes to MySubject constructor forces changes throughout all
the tests.

O Verify vs Callbacks

// If one of these equality comparisons fail we
just know that MyAction wasn't called with those
arguments.
mock.Verify(e => e.MyAction (
It.Is<ParameterType> (param =>
param.Fieldl == "some value" &&
param.Field2 == 3),
Times.Once) ;
// Instead:
ParameterType calledArgs = null;
mock
.Setup (e => e.MyAction (It.IsAny<ParameterType>
0))
.Callback<ParameterType> (param => calledArgs =
param) ;
Assert.That (calledArgs, Is.Not.Null);
Assert.That (calledArgs.Fieldl, Is.EqualTo ("some
value")) ;

Assert.That (calledArgs.Field2, Is.EqualTo(3));

Tip: Avoid stating in your tests how things were done, instead strive
to describe what happened. Observable Behavior

By Sérgio Ferreira
(AlienEngineer)
Page 1 of 2.

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.

C# Unit-Tests - Advanced Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20391/

»& Behavior testing

private int _someVariable;

private MySubject MakeSubject ()
{

var mock = new Mock<IActionInterface> () ;
mock.Setup (e => e.Action (It.IsAny<int>()))

.Callback<Int> (s => _someVariable= sg) ;

return new MySubject (mock.Object) ;

private bool WasStored(int value) =>
_someVariable == value;
[Test]
public void SomeTestMethod ()
{
// Arrange
var subject = MakeSubject () ;
// Act

subject.DoSomething () ;

// Assert
Assert.True (WasStored(5)) ;
}

- Changes to dependencies are done in one place only.
- Focuses on Behavior not implementation.

% Dependencies - Common missed tests

What happens when the dependency..

= throws exception?
= returns null?

= returns wrong format? (e.g. expected json)

Tip: Testing is about making sure we have answers to questions.
Testing is done when we don't have doubts, therefore no more
questions.
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internal abstract class WebApiTests { // Hide file access through Stream Factory
private WebApplicationFactory<Startup> _factory; public interface IStreamFactory
{
protected WebApiTests () => Stream OpenStream() ;
_factory = new WebApplicationFactory<Startup> void CloseStream(Stream stream) ;

() }
// On test file

protected HttpClient GetClient () => private IStreamFactory MakeStreamStorage ()
_factory.CreateClient () ; {
} // Create one isolated MemoryStream per test run!
class MyApiControllerTests : WebApiTests { _stream = new MemoryStream() ;
public async Task requestTest () { var mock = new Mock<IStreamFactory> () ;
// Arrange mock.Setup (s => s.OpenStream()) .Returns (_st—
var client = GetClient () ; ream) ;

return mock.Object;

// Act }
var response = await
void Test() {
// Assert // slow & can fail
response.EnsureSuccessStatusCode () ; var data = File.ReadAllText (@"Data.json") ;
var data = await // slow & can fail
response.Content.ReadAsAsync<Model> () ; var x = JsonConvert.DeserializeObject<MyModel> (—
data) ;
// Assert data ... // None of the above lines have anything to do
} with the test. It's all about Arrange section.
! }
using Microsoft.AspNetCore.Mvc.Testing library for auto mocking Tip: If you feel the need to do this, probably your subject under test is
out the http layer. doing to much. See Don't ignore the signs!
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