
C# Unit-Tests - Advanced Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20391/

 Implementation testing Implementation testing

public void Test() {
 // Arrange
 var mock = new Mock<IActionInterface>();
 var subject = new MySubject(mock.Object);

 // Act
 subject.DoSomething();

 // Assert
 mock.Verify(e => e.Store(It.IsAny<int>
()), Times.Once);
}

- Locks tests with the dependency:
 - The test method is aware of IActionInterface.
 - Creates duplicated code.
- Changes to MySubject constructor forces changes throughout all
the tests.

 Verify vs Callbacks Verify vs Callbacks

// If one of these equality comparisons fail we
just know that MyAction wasn't called with those
arguments.
mock.Verify(e => e.MyAction(
 It.Is<ParameterType>(param =>
 param.Field1 == "some value" &&
 param.Field2 == 3),
 Times.Once);
// Instead:
ParameterType calledArgs = null;
mock
 .Setup(e => e.MyAction(It.IsAny<Para‐
meterType>()))
 .Callback<ParameterType>(param =>
calledArgs = param);
Assert.That(calledArgs, Is.Not.Null);
Assert.That(calledArgs.Field1, Is.EqualT‐
o("some value"));
Assert.That(calledArgs.Field2, Is.EqualT‐
o(3));

TipTip: Avoid stating in your tests how things were done, instead strive
to describe what happened. Observable BehaviorObservable Behavior

 Behavior testing Behavior testing

private int _someVariable;

private MySubject MakeSubject()
{
 var mock = new Mock<IActionInterface>();

 mock.Setup(e => e.Action(It.IsAny<int>
()))
 .Callback<Int>(s => _someVariable=
s);

 return new MySubject(mock.Object);
}

private bool WasStored(int value) =>
 _someVariable == value;

[Test]
public void SomeTestMethod()
{
 // Arrange
 var subject = MakeSubject();

 // Act
 subject.DoSomething();

 // Assert
 Assert.True(WasStored(5));
}

- Changes to dependencies are done in one place only.
- Focuses on Behavior not implementation.

 Dependencies - Common missed tests Dependencies - Common missed tests

What happens when the dependency..

 throws exception?

 returns null?

 returns wrong format? (e.g. expected json)

TipTip: Testing is about making sure we have answers to questions.
Testing is done when we don't have doubts, therefore no more
questions.

By Sérgio FerreiraSérgio Ferreira
(AlienEngineer)

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.
Page 1 of 2.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-advanced
http://www.cheatography.com/alienengineer/
http://crosswordcheats.com

C# Unit-Tests - Advanced Cheat Sheet
by Sérgio Ferreira (AlienEngineer) via cheatography.com/89520/cs/20391/

 Web Apis Web Apis

internal abstract class WebApiTests {
 private WebApplicationFactory<Startup>
_factory;

 protected WebApiTests() =>
 _factory = new
WebApplicationFactory<Startup>();

 protected HttpClient GetClient() =>
 _factory.CreateClient();
}
class MyApiControllerTests : WebApiTests {
 public async Task requestTest() {
 // Arrange
 var client = GetClient();

 // Act
 var response = await
client.GetAsync("api/someuri");

 // Assert
 response.EnsureSuccessStatusCo‐
de();
 var data = await
response.Content.ReadAsAsync<Model>();

 // Assert data ...
 }
}

using Microsoft.AspNetCore.Mvc.TestingMicrosoft.AspNetCore.Mvc.Testing library for auto mocking out
the http layer.

 Files Files

// Hide file access through Stream Factory
public interface IStreamFactory
{
 Stream OpenStream();
 void CloseStream(Stream stream);
}
// On test file
private IStreamFactory MakeStreamStorage()
{
 // Create one isolated MemoryStream per test
run!
 _stream = new MemoryStream();
 var mock = new Mock<IStreamFactory>();
 mock.Setup(s => s.OpenStream()).Retur‐
ns(_stream);
 return mock.Object;
}

 Test arrange with files Test arrange with files

void Test() {
 // slow & can fail
 var data = File.ReadAllText(@"Data.j‐
son");
 // slow & can fail
 var x = JsonConvert.DeserializeObject<‐
MyModel>(data);
 // None of the above lines have anything to do
with the test. It's all about Arrange section.
}

TipTip: If you feel the need to do this, probably your subject under test is
doing to much. See Don't ignore the signs!Don't ignore the signs!

By Sérgio FerreiraSérgio Ferreira
(AlienEngineer)

cheatography.com/alienengineer/

Published 28th August, 2019.
Last updated 3rd September, 2019.
Page 2 of 2.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/alienengineer/
http://www.cheatography.com/alienengineer/cheat-sheets/c-unit-tests-advanced
http://www.cheatography.com/alienengineer/
http://crosswordcheats.com

	C# Unit-Tests - Advanced Cheat Sheet - Page 1
	 Implementation testing
	 Behavior testing
	 Verify vs Callbacks
	 Dependencies - Common missed tests

	C# Unit-Tests - Advanced Cheat Sheet - Page 2
	 Web Apis
	 Files
	 Test arrange with files

