
Data Structes 1 Cheat Sheet
by alicanpayasli via cheatography.com/194447/cs/40773/

ArrayArray

Allows data of the same type to be kept under a single variable
name.
The number of elements is specified when defining.
Identification Examples: Identification Examples:
Example 1:Example 1: int array1[12]
Example 2:Example 2: char array2[20]
Assign elements to arrays examples:Assign elements to arrays examples:
Example 1:Example 1: int array1[5] = {1,2,3,4,5}
Example 2:Example 2: int array2[5] = {6,7,8}
// value of last two elements 0
Example 3:Example 3:
int array3[5], i;
for (i = 0; i<5; i++){
array3[i] = i;
printf("%d\n", array3[i]);}
Multidimensional arrays examples:Multidimensional arrays examples:
Example 1:Example 1:
int array[3][2] = {{1,2},{3,4},{5,6}};
int i,j;
for(i = 0;i<3; i++){
for(j=0; j<2; j++){
printf("%d\t", array[i][j]);}
printf("\n");}
Example 2:Example 2:
int array[3][2][2] = {1,2,3,4,5,6,7,8,9,10,11,12};
int i,j,k;
for(i = 0; i<3; i++){
for(j = 0; j<2; j++){
for(k = 0; k<2; k++){
printf("%d\t", array[i][j][k]);}
printf("\n");}
printf("\n");}

StacksStacks

It is a data structure in which the data is kept in a linear way and
addition and subtraction are made from the top point.
Last in first out rule is valid.
Stack With Array:Stack With Array:
int Stack[10];
int top = -1;
void Push(int a){
if(top == 9){
printf("No room in the stack.\n");}
else{
Stack[++top] = a;
printf("%d added into the stack.\n", a);}}
int pop(){
if (top<0){
printf("No data in the stack.\n");
return -1;}
else{
int a = Stack[top--];
printf("%d removed from the stack.\n", a);
return a;}}
int peek(){
if (top<0){
printf("No data in the stack.\n");
return -1;}
else{
printf("%d is at the top of the stack.\n",Stack[top]);
return Stack[top];}}
Stack With Linked List: Stack With Linked List:
struct Node {
int data;
struct Node* next;};
struct Node* top = NULL;
void Push(int a) {
struct Node* t = (struct Node*)malloc(sizeof(struct Node));
t->data = a;
if(top == NULL){

By alicanpayaslialicanpayasli

cheatography.com/alicanpayasli/

Published 11th October, 2023.
Last updated 11th October, 2023.
Page 1 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alicanpayasli/
http://www.cheatography.com/alicanpayasli/cheat-sheets/data-structes-1
http://www.cheatography.com/alicanpayasli/
https://readable.com

Data Structes 1 Cheat Sheet
by alicanpayasli via cheatography.com/194447/cs/40773/

Stacks (cont)Stacks (cont)

top = t;
top->next = NULL;}
else {
t->next = top;
top = t;}
printf("%d added into the stack.\n", a);}
int Pop() {
if(top == NULL) {
printf("No data in the stack.\n");
return -1;}
else {
struct Node* t = top;
int a = t->data;
top = top->next;
printf("%d removed from the stack. \n", a);
free(t);
return a;}}
int Peek() {
if(top == NULL) {
printf("No data in the stack.\n");
return -1;}
else {
printf("%d is at the top of the stack.\n", top->data);
return top->data;}}

Linked ListLinked List

They are structures in which objects of the same type are stored in a
linear order and interconnected. The objects in the linked list are
called nodes, and nodes are connected to each other by pointers
that point to the next node. There is also a head pointer that points to
the beginning of the list.Nodes consist of two parts.
Singly linked list: Singly linked list: Navigation in the list is forward only.
Doubly linked list: Doubly linked list: Navigation in the list is forward and back.
Circular linked list: Circular linked list: The next pointer of the last node points to the first
node of the list.
Create Node: Create Node:
struct Node {
int data;
struct Node* next;

Linked List (cont)Linked List (cont)

};
struct Node* head = NULL;
Insertion: Insertion:
void Insert(int a){
struct Node* t = (struct Node*) malloc(sizeof(struct Node));
t->data = a;
t->next = head;
head= t;
}
Deletion: Deletion:
void Delete(){
if(head!=NULL){
struct Node *t = head;
head = head->next;
free(t);
}}
Traversal: Traversal:
void traverse(){
struct Node*t = head;
while(t!=NULL){
printf("%d ", t->data);
t = t->next;
}}

QueueQueue

It ensures that the data is kept in linear order. They are referred to by
the first in first out (FIFO) rule.
Queue With Array: Queue With Array:
void Enqueue(int a){
if(count == 6){
printf("No place in the queue.\n");}
else{
queue[rear] = a;
rear++;
if(rear == 6) rear = 0;
count++;
printf("%d added in the queue.\n", a);}}

By alicanpayaslialicanpayasli

cheatography.com/alicanpayasli/

Published 11th October, 2023.
Last updated 11th October, 2023.
Page 2 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alicanpayasli/
http://www.cheatography.com/alicanpayasli/cheat-sheets/data-structes-1
http://www.cheatography.com/alicanpayasli/
https://readable.com

Data Structes 1 Cheat Sheet
by alicanpayasli via cheatography.com/194447/cs/40773/

Queue (cont)Queue (cont)

void Dequeue(){
if(count == 0){
printf("No data in the queue.\n");}
else{
int a = queue[front];
front++;
if(front == 6) front = 0;
count--;
printf("%d removed from the queue.\n", a);}}
Queue With Linked List: Queue With Linked List:
struct Node {
int data;
struct Node* next;};
struct Node* front = NULL;
struct Node* rear = NULL;
void Enqueue(int a){
struct Node* t = (struct Node*) malloc(sizeof(struct Node));
t->data = a;
t->next = NULL;
if(front == NULL && rear == NULL){
front = rear = t;}
else{
rear->next = t;
rear=t;}
printf("%d added in the queue.\n", a); }
void Dequeue(){
if(front == NULL){
printf("No data in the queue.\n");}
else{
struct Node* t= front;
if(front == rear){
front = rear = NULL;}
else{
front = front->next;}
printf("%d removed from the queue.\n", t->data);}}

By alicanpayaslialicanpayasli

cheatography.com/alicanpayasli/

Published 11th October, 2023.
Last updated 11th October, 2023.
Page 3 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/alicanpayasli/
http://www.cheatography.com/alicanpayasli/cheat-sheets/data-structes-1
http://www.cheatography.com/alicanpayasli/
https://readable.com

	Data Structes 1 Cheat Sheet - Page 1
	Array
	Stacks

	Data Structes 1 Cheat Sheet - Page 2
	Queue
	Linked List

	Data Structes 1 Cheat Sheet - Page 3

