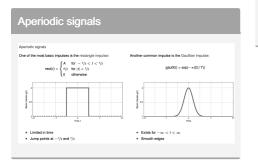
ISP Cheat Sheet

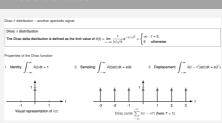
Cheatography

by alexey192 via cheatography.com/191217/cs/39735/

Periodic signals


Periodic signals

A signal is periodic with base period T0 > 0 if for all $n \in N$ holds that s(t) = s(t + nT0)where • T0 denotes the smallest value such that the definition holds,


• f0 = 1/T0 denotes the base frequency of the signal given in Hz, and • ω 0 = 2 π f0 is called angular frequency.

Note: The angular frequency may be given in rad/s, where 1 rad =

1/2π Hz

Dirac δ distribution

Energy and power of signals

Energy of a signal	
The energy E _s of a time-continuous signal the squred magnitude of the signal, i.e.	
$E_s = \int_{-\infty}^{\infty} s(t) ^2 dt.$	q
For a time-discrete signal s(n), the energy is likewise defined as	
$E_{4} = \sum_{n=-\infty}^{\infty} s[n] ^{2}$.	¢
A signal with finite energy, i.e., $\mathcal{E}_{z}<\infty,$ is called energy signal.	
Power of a signal The power P ₂ of a time-continuous signal the time avareae of the squared magnitude of the signal, i.e.	
The power P, or a time-continuous signal the time avarage or the squared magnitude or the signal, i.e.	
$P_{\mathfrak{s}} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \mathfrak{s}(t) ^2 dt < \infty.$	4

By alexey192

cheatography.com/alexey192/

Not published yet. Last updated 31st July, 2023. Page 1 of 1. Sponsored by Readable.com Measure your website readability! https://readable.com